Exploration of microbial communities of Indian hot springs and their potential biotechnological applications

Author(s):  
Sneha Bhandari ◽  
Tapan Kumar Nailwal
2017 ◽  
Vol 19 (8) ◽  
pp. 2949-2963 ◽  
Author(s):  
Matteo Cavaliere ◽  
Song Feng ◽  
Orkun S. Soyer ◽  
José I. Jiménez

Extremophiles ◽  
2018 ◽  
Vol 22 (4) ◽  
pp. 687-698 ◽  
Author(s):  
Lucy C. Stewart ◽  
Valerie K. Stucker ◽  
Matthew B. Stott ◽  
Cornel E. J. de Ronde

2020 ◽  
Vol 8 (6) ◽  
pp. 906 ◽  
Author(s):  
Francisco L. Massello ◽  
Chia Sing Chan ◽  
Kok-Gan Chan ◽  
Kian Mau Goh ◽  
Edgardo Donati ◽  
...  

The study of microbial communities from extreme environments is a fascinating topic. With every study, biologists and ecologists reveal interesting facts and questions that dispel the old belief that these are inhospitable environments. In this work, we assess the microbial diversity of three hot springs from Neuquén, Argentina, using high-throughput amplicon sequencing. We predicted a distinct metabolic profile in the acidic and the circumneutral samples, with the first ones being dominated by chemolithotrophs and the second ones by chemoheterotrophs. Then, we collected data of the microbial communities of hot springs around the world in an effort to comprehend the roles of pH and temperature as shaping factors. Interestingly, there was a covariation between both parameters and the phylogenetic distance between communities; however, neither of them could explain much of the microbial profile in an ordination model. Moreover, there was no correlation between alpha diversity and these parameters. Therefore, the microbial communities’ profile seemed to have complex shaping factors beyond pH and temperature. Lastly, we looked for taxa associated with different environmental conditions. Several such taxa were found. For example, Hydrogenobaculum was frequently present in acidic springs, as was the Sulfolobaceae family; on the other hand, Candidatus Hydrothermae phylum was strongly associated with circumneutral conditions. Interestingly, some singularities related to sites featuring certain taxa were also observed.


2009 ◽  
Vol 71-73 ◽  
pp. 87-91 ◽  
Author(s):  
P. Chiacchiarini ◽  
L. Lavalle ◽  
Alejandra Giaveno ◽  
Edgardo R. Donati

This work presents an overview of the physicochemical and biological studies carried out along Rio Agrio and in different hot springs belonging to the geothermal Copahue volcano system, in Neuquén Argentina. This is an extreme environment characterized by wide ranges of temperature, pH (<1 to 8) and heavy metals concentration. In these extreme conditions chemolitho-autotrophic bacteria, archaea, heterotrophic bacteria, yeasts and filamentous fungi were detected. Members of Leptospirillum ferrooxidans, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidianus spp., among others, were successfully cultivated and physiological properties of different isolates were determined. Additionally, bioleaching and biooxidation of regional ores were carried out using mixed native cultures.


2019 ◽  
Author(s):  
Shijie Bai ◽  
Xiaotong Peng

Abstract. The microbial diversity and functions of three high-temperature neutral hot springs water samples at different depths (0 m, 19 m and 58 m) were investigated based on 16S rRNA gene sequencing and a functional gene array (GeoChip 5.0). The results revealed that the bacterial communities were distinct at different depths in the hot springs. Additionally, in response to the depths, bacterial/archaeal community compositions exhibited shifts over the depth profiles. Aquificae, Alpha-proteobacteria, and Deinococcus-Thermus were the dominating phyla at 0 m, 19 m, and 58 m, respectively. Hydrogenobacter, Sphingobium, and Thermus were the most abundant genera at 0 m, 19 m, and 58 m, respectively. The phylum Thaumarchaeota was the most abundant member of the archaeal community in the samples at different hot spring depths. Functional results of the microbial communities indicated that microbial metabolic functions were mainly related to sulfur, nitrogen cycling, and hydrogen oxidation. In summary, our results demonstrated that distinct microbial communities and functions were found at different depths of hot springs in a very limited area. These findings will provide new insights into the deep-subsurface biosphere associated with terrestrial hot springs.


Author(s):  
Yelizaveta Rassadkina ◽  
Spencer Roth ◽  
Tamar Barkay

Yellowstone National Park is home to many different hot springs, lakes, geysers, pools, and basins that range in pH, chemical composition, and temperature. These different environmental variations provide a broad range of conditions that select and grow diverse communities of microorganisms. In this study, we collected samples from geochemically diverse lakes and springs to characterize the microbial communities present through 16S rRNA metagenomic analysis. This information was then used to observe how various microorganisms survive in high mercury environments. The results show the presence of microorganisms that have been studied in previous literature. The results also depict gradients of microorganisms including thermophilic bacteria and archaea that exist in these extreme environments. In addition, beta diversity analyses of the sequence data showed site clustering based primarily on temperature instead of pH or sample site, suggesting that while pH, temperature, and sample site were all shown to be significant, temperature is the strongest factor driving microorganism community development. While it is important to characterize the microorganism community present, it is also important to understand how this community functions as a result of its selection. Along with looking at community composition, genomic material was tested to see if it contained mercury methylating (hgcA) or mercury reducing (merA) genes. Out of 22 samples, three of them were observed to have merA genes, while no samples had hgcA genes. These results indicate that microorganisms in Mustard and Nymph Springs may use mercury reduction. Understanding how microorganisms survive in environments with high concentrations of toxic pollutants is crucial because it can be used as a model to better understand mechanisms of resistance and the biogeochemical cycle, as well as for bioremediation and other solutions to anthropogenic problems.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009093
Author(s):  
Pavlos Stephanos Bekiaris ◽  
Steffen Klamt

Microbial communities have become a major research focus due to their importance for biogeochemical cycles, biomedicine and biotechnological applications. While some biotechnological applications, such as anaerobic digestion, make use of naturally arising microbial communities, the rational design of microbial consortia for bio-based production processes has recently gained much interest. One class of synthetic microbial consortia is based on specifically designed strains of one species. A common design principle for these consortia is based on division of labor, where the entire production pathway is divided between the different strains to reduce the metabolic burden caused by product synthesis. We first show that classical division of labor does not automatically reduce the metabolic burden when metabolic flux per biomass is analyzed. We then present ASTHERISC (Algorithmic Search of THERmodynamic advantages in Single-species Communities), a new computational approach for designing multi-strain communities of a single-species with the aim to divide a production pathway between different strains such that the thermodynamic driving force for product synthesis is maximized. ASTHERISC exploits the fact that compartmentalization of segments of a product pathway in different strains can circumvent thermodynamic bottlenecks arising when operation of one reaction requires a metabolite with high and operation of another reaction the same metabolite with low concentration. We implemented the ASTHERISC algorithm in a dedicated program package and applied it on E. coli core and genome-scale models with different settings, for example, regarding number of strains or demanded product yield. These calculations showed that, for each scenario, many target metabolites (products) exist where a multi-strain community can provide a thermodynamic advantage compared to a single strain solution. In some cases, a production with sufficiently high yield is thermodynamically only feasible with a community. In summary, the developed ASTHERISC approach provides a promising new principle for designing microbial communities for the bio-based production of chemicals.


2014 ◽  
Vol 4 (1) ◽  
pp. 25-30 ◽  
Author(s):  
E. A. Khalilova ◽  
R. A. Nuratinov ◽  
S. C. Kotenko ◽  
E. A. Islammagomedova

Sign in / Sign up

Export Citation Format

Share Document