Captive breeding, farming, and ranching

2022 ◽  
pp. 103-113
Author(s):  
Valentine Lance
Keyword(s):  
Author(s):  
Dean E. Biggins ◽  
David A. Eads

Black-footed ferrets were reduced to a remnant population of 10 in 1985 due to diseases (plague, canine distemper), but successful captive breeding and releases have improved the prospects for ferret recovery. Comparisons between black-footed ferrets and Siberian polecats, close relatives that can interbreed and produce fertile offspring, allow the following evolutionary speculation. Predation on ferrets and polecats tends to narrow their niches and promote specialization due to requirements for escape habitats. In Asia, that influence is countered by the larger and more diverse area of steppe and alpine meadow habitats for polecats, and by plague which causes large variation in prey abundance. In North America, the selective pressure favoring specialization in ferrets on prairie dog prey and burrows had no strong counter-force before plague invaded. Plague is an immense challenge to black-footed ferret recovery, and several management tools including vaccines and vector control may be necessary to conserve the species.


2018 ◽  
Vol 5 (5) ◽  
pp. 172470 ◽  
Author(s):  
Stephanie K. Courtney Jones ◽  
Adam J. Munn ◽  
Phillip G. Byrne

Captive breeding programmes are increasingly relied upon for threatened species management. Changes in morphology can occur in captivity, often with unknown consequences for reintroductions. Few studies have examined the morphological changes that occur in captive animals compared with wild animals. Further, the effect of multiple generations being maintained in captivity, and the potential effects of captivity on sexual dimorphism remain poorly understood. We compared external and internal morphology of captive and wild animals using house mouse ( Mus musculus ) as a model species. In addition, we looked at morphology across two captive generations, and compared morphology between sexes. We found no statistically significant differences in external morphology, but after one generation in captivity there was evidence for a shift in the internal morphology of captive-reared mice; captive-reared mice (two generations bred) had lighter combined kidney and spleen masses compared with wild-caught mice. Sexual dimorphism was maintained in captivity. Our findings demonstrate that captive breeding can alter internal morphology. Given that these morphological changes may impact organismal functioning and viability following release, further investigation is warranted. If the morphological change is shown to be maladaptive, these changes would have significant implications for captive-source populations that are used for reintroduction, including reduced survivorship.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2191
Author(s):  
Pablo García-Salinas ◽  
Victor Gallego ◽  
Juan F. Asturiano

The chondrichthyan fishes, which comprise sharks, rays, and chimaeras, are one of the most threatened groups of vertebrates on the planet. Given this situation, an additional strategy for the protection of these species could be the ex situ conservation projects developed in public aquaria and research centers. Nevertheless, to increase sustainability and to develop properly in situ reintroduction strategies, captive breeding techniques, such as sperm extraction and artificial insemination, should be developed. These techniques are commonly used in other threatened species and could be also used in chondrichthyans. However, the different reproductive morphologies found in this group can complicate both processes. Therefore, a comparison of the reproductive anatomy of eight distinct chondrichthyans, with an emphasis on those important differences when performing sperm extraction or artificial insemination, is carried out herein. Sharks and chimaeras belonging to the Scyliorhinidae, Carcharhinidae, Centrophoridae, Etmopteridae, Hexanchidae, and Chimaeridae families were obtained from commercial fisheries, public aquaria, and stranding events. In addition, the process of obtaining viable sperm samples through cannulation, abdominal massage, and oviducal gland extraction is described in detail for both living and dead animals.


Environments ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 25
Author(s):  
Caterina M. Antognazza ◽  
Isabella Vanetti ◽  
Vanessa De Santis ◽  
Adriano Bellani ◽  
Monica Di Francesco ◽  
...  

The reintroduction of the extinct beluga sturgeon (Huso huso L.), an anadromous species with economic and traditional relevance, is a priority in next conservation strategies in Northern Italy. The EU-LIFE NATURA project aims to reintroduce the beluga sturgeon in the Po River basin through a captive breeding program. Critical requirements for the success of the program are river connectivity and knowledge of genetic diversity of the selected broodstocks to ensure self-sustainability of reintroduced populations. Here, the four broodstocks used for the reintroduction of beluga sturgeon have been genetically screened, genotyping 13 loci and sequencing mitochondrial DNA cytochrome b (Cyt b) gene and the entire mitochondrial DNA control region (D-Loop). The four broodstocks showed a medium-high level of nuclear genetic variability and the presence of two sub-populations, evidencing a total level of inbreeding coefficients able to sustain the good potential as future breeders. Mitochondrial analyses showed a genetic variability comparable to wild populations, further strengthening the positive potential of the investigated broodstock. Therefore, this study, showed how the degree of genetic diversity found within the four broodstocks used for H. huso reintroduction in the Po River basin could be suitable to ensure the success of the program, avoiding the inbreeding depression associated with founder effect and captive breeding.


2021 ◽  
Author(s):  
Jaume Adrià Badia‐Boher ◽  
Antonio Hernández‐Matías ◽  
Carlota Viada ◽  
Joan Real

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1515
Author(s):  
Marissa L. Parrott ◽  
Leanne V. Wicker ◽  
Amanda Lamont ◽  
Chris Banks ◽  
Michelle Lang ◽  
...  

Modern zoos are increasingly taking a leading role in emergency management and wildlife recovery. In the face of climate change and the predicted increase in frequency and magnitude of catastrophic events, zoos provide specialised expertise to assist wildlife welfare and endangered species recovery. In the 2019–2020 Australian bushfire season, now called Australia’s Black Summer, a state government-directed response was developed, assembling specialised individuals and organisations from government, non-government organisations, research institutions, and others. Here, we detail the role of Zoos Victoria staff in wildlife triage and welfare, threatened species evacuation and recovery, media and communications, and fundraising during and after the fires. We share strategies for future resilience, readiness, and the ability to mobilise quickly in catastrophic events. The development of triage protocols, emergency response kits, emergency enclosures, and expanded and new captive breeding programs is underway, as are programs for care of staff mental health and nature-based community healing for people directly affected by the fires. We hope this account of our response to one of the greatest recent threats to Australia’s biodiversity, and steps to prepare for the future will assist other zoos and wildlife organisations around the world in preparations to help wildlife before, during, and after catastrophic events.


Sign in / Sign up

Export Citation Format

Share Document