Unsupervised machine learning: clustering algorithms

Author(s):  
Hoss Belyadi ◽  
Alireza Haghighat
2021 ◽  
Author(s):  
Floe Foxon

Ammonoid identification is crucial to biostratigraphy, systematic palaeontology, and evolutionary biology, but may prove difficult when shell features and sutures are poorly preserved. This necessitates novel approaches to ammonoid taxonomy. This study aimed to taxonomize ammonoids by their conch geometry using supervised and unsupervised machine learning algorithms. Ammonoid measurement data (conch diameter, whorl height, whorl width, and umbilical width) were taken from the Paleobiology Database (PBDB). 11 species with ≥50 specimens each were identified providing N=781 total unique specimens. Naive Bayes, Decision Tree, Random Forest, Gradient Boosting, K-Nearest Neighbours, and Support Vector Machine classifiers were applied to the PBDB data with a 5x5 nested cross-validation approach to obtain unbiased generalization performance estimates across a grid search of algorithm parameters. All supervised classifiers achieved ≥70% accuracy in identifying ammonoid species, with Naive Bayes demonstrating the least over-fitting. The unsupervised clustering algorithms K-Means, DBSCAN, OPTICS, Mean Shift, and Affinity Propagation achieved Normalized Mutual Information scores of ≥0.6, with the centroid-based methods having most success. This presents a reasonably-accurate proof-of-concept approach to ammonoid classification which may assist identification in cases where more traditional methods are not feasible.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1268 ◽  
Author(s):  
Zhenzhen Di ◽  
Miao Chang ◽  
Peikun Guo ◽  
Yang Li ◽  
Yin Chang

Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those in surface water have not been fully revealed and unsupervised machine learning techniques, such as clustering algorithms, have been neglected in related research fields. In this study, real-time monitoring data for chemical oxygen demand (COD), ammonia nitrogen (NH3-N), pH, and dissolved oxygen in the wastewater discharged from 2213 factories and in the surface water at 18 monitoring sections (sites) in 7 administrative regions in the Yangtze River Basin from 2016 to 2017 were collected and analyzed by the partitioning around medoids (PAM) and expectation–maximization (EM) clustering algorithms, Welch t-test, Wilcoxon test, and Spearman correlation. The results showed that compared with the spatial cluster comprising unpolluted sites, the spatial cluster comprised heavily polluted sites where more wastewater was discharged had relatively high COD (>100 mg L−1) and NH3-N (>6 mg L−1) concentrations and relatively low pH (<6) from 15 industrial classes that respected the different discharge limits outlined in the pollutant discharge standards. The results also showed that the economic activities generating wastewater and the geographical distribution of the heavily polluted wastewater changed from 2016 to 2017, such that the concentration ranges of pollutants in discharges widened and the contributions from some emerging enterprises became more important. The correlations between the quality of the wastewater and the surface water strengthened as the whole-year data sets were reduced to the heavily polluted periods by the EM clustering and water quality evaluation. This study demonstrates how unsupervised machine learning algorithms play an objective and effective role in data mining real-time monitoring information and highlighting spatio–temporal relationships between pollutants in wastewater discharges and surface water to support scientific water resource management.


2020 ◽  
Vol 9 (1) ◽  
pp. 26-47
Author(s):  
Emre ÇAM ◽  
Muhammet Esat ÖZDAĞ

This study aims at finding out students’ course success in vocational courses of computer and instructional technologies department by means of machine learning algorithms. In the scope of the study, a dataset was formed with demographic information and exam scores obtained from the students studying in the Department of Computer Education and Instructional Technology at Gaziosmanpasa University. 127 students, who took the courses of Programming Languages I and Programming Languages II, participated in the study. Model that was suggested in the study was implemented using open source coded Keras library. Students were split into clusters by K-means and Deep Embedded Clustering algorithms which are unsupervised machine learning algorithms. Effect of the attributes that enabled clustering was identified by Kruskal Wallis test. With this study, a model that helps educators and instructional designers build skills for predicting, assures discovering success patterns through data mining and facilitates assisting in the stages of lesson planning was proposed.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6347
Author(s):  
Alimed Celecia ◽  
Karla Figueiredo ◽  
Carlos Rodriguez ◽  
Marley Vellasco ◽  
Edwin Maldonado ◽  
...  

Seismic interpretation is a fundamental process for hydrocarbon exploration. This activity comprises identifying geological information through the processing and analysis of seismic data represented by different attributes. The interpretation process presents limitations related to its high data volume, own complexity, time consumption, and uncertainties incorporated by the experts’ work. Unsupervised machine learning models, by discovering underlying patterns in the data, can represent a novel approach to provide an accurate interpretation without any reference or label, eliminating the human bias. Therefore, in this work, we propose exploring multiple methodologies based on unsupervised learning algorithms to interpret seismic data. Specifically, two strategies considering classical clustering algorithms and image segmentation methods, combined with feature selection, were evaluated to select the best possible approach. Additionally, the resultant groups of the seismic data were associated with groups obtained from well logs of the same area, producing an interpretation with aggregated lithologic information. The resultant seismic groups correctly represented the main seismic facies and correlated adequately with the groups obtained from the well logs data.


Author(s):  
Andri M Kristijansson ◽  
Tyr Aegisson

In order to generate precise behavioural patterns or user segmentation, organisations often struggle with pulling information from data and choosing suitable Machine Learning (ML) techniques. Furthermore, many marketing teams are unfamiliar with data-driven classification methods. The goal of this research is to provide a framework that outlines the Unsupervised Machine Learning (UML) methods for User-Profiling (UP) based on essential data attributes. A thorough literature study was undertaken on the most popular UML techniques and their dataset attributes needs. For UP, a structure is developed that outlines several UML techniques. In terms of data size and dimensions, it offers two-stage clustering algorithms for category, quantitative, and mixed types of datasets. The clusters are determined in the first step using a multilevel or model-based classification method. Cluster refining is done in the second step using a non-hierarchical clustering technique. Academics and professionals may use the framework to figure out which UML techniques are best for creating strong profiles or data-driven user segmentation.


2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


2020 ◽  
Author(s):  
Jiawei Peng ◽  
Yu Xie ◽  
Deping Hu ◽  
Zhenggang Lan

The system-plus-bath model is an important tool to understand nonadiabatic dynamics for large molecular systems. The understanding of the collective motion of a huge number of bath modes is essential to reveal their key roles in the overall dynamics. We apply the principal component analysis (PCA) to investigate the bath motion based on the massive data generated from the MM-SQC (symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian) nonadiabatic dynamics of the excited-state energy transfer dynamics of Frenkel-exciton model. The PCA method clearly clarifies that two types of bath modes, which either display the strong vibronic couplings or have the frequencies close to electronic transition, are very important to the nonadiabatic dynamics. These observations are fully consistent with the physical insights. This conclusion is obtained purely based on the PCA understanding of the trajectory data, without the large involvement of pre-defined physical knowledge. The results show that the PCA approach, one of the simplest unsupervised machine learning methods, is very powerful to analyze the complicated nonadiabatic dynamics in condensed phase involving many degrees of freedom.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Castela Forte ◽  
Galiya Yeshmagambetova ◽  
Maureen L. van der Grinten ◽  
Bart Hiemstra ◽  
Thomas Kaufmann ◽  
...  

AbstractCritically ill patients constitute a highly heterogeneous population, with seemingly distinct patients having similar outcomes, and patients with the same admission diagnosis having opposite clinical trajectories. We aimed to develop a machine learning methodology that identifies and provides better characterization of patient clusters at high risk of mortality and kidney injury. We analysed prospectively collected data including co-morbidities, clinical examination, and laboratory parameters from a minimally-selected population of 743 patients admitted to the ICU of a Dutch hospital between 2015 and 2017. We compared four clustering methodologies and trained a classifier to predict and validate cluster membership. The contribution of different variables to the predicted cluster membership was assessed using SHapley Additive exPlanations values. We found that deep embedded clustering yielded better results compared to the traditional clustering algorithms. The best cluster configuration was achieved for 6 clusters. All clusters were clinically recognizable, and differed in in-ICU, 30-day, and 90-day mortality, as well as incidence of acute kidney injury. We identified two high mortality risk clusters with at least 60%, 40%, and 30% increased. ICU, 30-day and 90-day mortality, and a low risk cluster with 25–56% lower mortality risk. This machine learning methodology combining deep embedded clustering and variable importance analysis, which we made publicly available, is a possible solution to challenges previously encountered by clustering analyses in heterogeneous patient populations and may help improve the characterization of risk groups in critical care.


Sign in / Sign up

Export Citation Format

Share Document