Physicochemical, biopharmaceutical, and practical considerations for efficient nose-to-brain drug delivery

Author(s):  
Umesh D. Laddha ◽  
Amol A. Tagalpallewar
2014 ◽  
Vol 21 (37) ◽  
pp. 4247-4256 ◽  
Author(s):  
Wei-Yi Ong ◽  
Suku-Maran Shalini ◽  
Luca Costantino

2020 ◽  
Vol 26 (13) ◽  
pp. 1448-1465 ◽  
Author(s):  
Jozef Hanes ◽  
Eva Dobakova ◽  
Petra Majerova

Tauopathies are neurodegenerative disorders characterized by the deposition of abnormal tau protein in the brain. The application of potentially effective therapeutics for their successful treatment is hampered by the presence of a naturally occurring brain protection layer called the blood-brain barrier (BBB). BBB represents one of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders, where sufficient BBB penetration is inevitable. BBB is a heavily restricting barrier regulating the movement of molecules, ions, and cells between the blood and the CNS to secure proper neuronal function and protect the CNS from dangerous substances and processes. Yet, these natural functions possessed by BBB represent a great hurdle for brain drug delivery. This review is concentrated on summarizing the available methods and approaches for effective therapeutics’ delivery through the BBB to treat neurodegenerative disorders with a focus on tauopathies. It describes the traditional approaches but also new nanotechnology strategies emerging with advanced medical techniques. Their limitations and benefits are discussed.


2020 ◽  
Vol 21 (9) ◽  
pp. 649-660
Author(s):  
Subashini Raman ◽  
Syed Mahmood ◽  
Ayah R. Hilles ◽  
Md Noushad Javed ◽  
Motia Azmana ◽  
...  

Background: Blood-brain barrier (BBB) plays a most hindering role in drug delivery to the brain. Recent research comes out with the nanoparticles approach, is continuously working towards improving the delivery to the brain. Currently, polymeric nanoparticle is extensively involved in many therapies for spatial and temporal targeted areas delivery. Methods: We did a non-systematic review, and the literature was searched in Google, Science Direct and PubMed. An overview is provided for the formulation of polymeric nanoparticles using different methods, effect of surface modification on the nanoparticle properties with types of polymeric nanoparticles and preparation methods. An account of different nanomedicine employed with therapeutic agent to cross the BBB alone with biodistribution of the drugs. Results: We found that various types of polymeric nanoparticle systems are available and they prosper in delivering the therapeutic amount of the drug to the targeted area. The effect of physicochemical properties on nanoformulation includes change in their size, shape, elasticity, surface charge and hydrophobicity. Surface modification of polymers or nanocarriers is also vital in the formulation of nanoparticles to enhance targeting efficiency to the brain. Conclusion: More standardized methods for the preparation of nanoparticles and to assess the relationship of surface modification on drug delivery. While the preparation and its output like drug loading, particle size, and charge, permeation is always conflicted, so it requires more attention for the acceptance of nanoparticles for brain delivery.


2010 ◽  
Vol 5 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Pushpanjali C. Ligade ◽  
Kisan R. Jadhav ◽  
Vilasrao J. Kadam

Theranostics ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 1481-1493 ◽  
Author(s):  
Xiaowei Dong

2018 ◽  
Vol 106 (11) ◽  
pp. 2881-2890 ◽  
Author(s):  
Timothy M. Brenza ◽  
Benjamin W. Schlichtmann ◽  
Biju Bhargavan ◽  
Julia E. Vela Ramirez ◽  
Rainie D. Nelson ◽  
...  

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 95
Author(s):  
Feipeng Yang ◽  
Maleen Cabe ◽  
Hope A. Nowak ◽  
Kelly A. Langert

Non-parenteral drug delivery systems using biomaterials have advantages over traditional parenteral strategies. For ocular and intranasal delivery, nanoparticulate systems must bind to and permeate through mucosal epithelium and other biological barriers. The incorporation of mucoadhesive and permeation-enhancing biomaterials such as chitosan facilitate this, but tend to increase the size and polydispersity of the nanoparticles, making practical optimization and implementation of mucoadhesive nanoparticle formulations a challenge. In this study, we adjusted key poly(lactic-co-glycolic) acid (PLGA) nanoparticle formulation parameters including the organic solvent and co-solvent, the concentration of polymer in the organic phase, the composition of the aqueous phase, the sonication amplitude, and the inclusion of chitosan in the aqueous phase. By doing so, we prepared four statistically unique size groups of PLGA NPs and equally-sized chitosan-PLGA NP counterparts. We loaded simvastatin, a candidate for novel ocular and intranasal delivery systems, into the nanoparticles to investigate the effects of size and surface modification on drug loading and release, and we quantified size- and surface-dependent changes in mucoadhesion in vitro. These methods and findings will contribute to the advancement of mucoadhesive nanoformulations for ocular and nose-to-brain drug delivery.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jun-Yong Wu ◽  
Yong-Jiang Li ◽  
Jiemin Wang ◽  
Xiong-Bin Hu ◽  
Si Huang ◽  
...  

AbstractTargeted drug delivery to the glioblastoma (GBM) overcoming blood–brain barrier (BBB) has been challenging. Exosomes are promising vehicles for brain tumor drug delivery, but the production and purification hinder its application for nanomedicine. Besides, the formation of protein corona (PC) may affect the behaviour of nanocarriers. Here, multifunctional exosomes-mimetics (EM) are developed and decorated with angiopep-2 (Ang) for enhancing GBM drug delivery by manipulating PC. Docetaxel (DTX)-loaded EM with Ang modification (DTX@Ang-EM) show less absorption of serum proteins and phagocytosis by macrophages. Ang-EM show enhanced BBB penetration ability and targeting ability to the GBM. Ang-EM-mediated delivery increase the concentration of DTX in the tumor area. The multifunctional DTX@Ang-EM exhibits significant inhibition effects on orthotopic GBM growth with reduced side effects of the chemotherapeutic. Findings from this study indicate that the developed DTX@Ang-EM provide a new strategy for targeted brain drug delivery and GBM therapy. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document