Occurrence and biological removal of VOCs and organic micropollutants

2022 ◽  
pp. 439-458
Author(s):  
Urszula Kotowska
2019 ◽  
Author(s):  
Luke Skala ◽  
Anna Yang ◽  
Max Justin Klemes ◽  
Leilei Xiao ◽  
William Dichtel

<p>Executive summary: Porous resorcinarene-containing polymers are used to remove halomethane disinfection byproducts and 1,4-dioxane from water.<br></p><p><br></p><p>Disinfection byproducts such as trihalomethanes are some of the most common micropollutants found in drinking water. Trihalomethanes are formed upon chlorination of natural organic matter (NOM) found in many drinking water sources. Municipalities that produce drinking water from surface water sources struggle to remain below regulatory limits for CHCl<sub>3</sub> and other trihalomethanes (80 mg L<sup>–1</sup> in the United States). Inspired by molecular CHCl<sub>3</sub>⊂cavitand host-guest complexes, we designed a porous polymer comprised of resorcinarene receptors. These materials show higher affinity for halomethanes than a specialty activated carbon used for trihalomethane removal. The cavitand polymers show similar removal kinetics as activated carbon and have high capacity (49 mg g<sup>–1</sup> of CHCl<sub>3</sub>). Furthermore, these materials maintain their performance in real drinking water and can be thermally regenerated under mild conditions. Cavitand polymers also outperform activated carbon in their adsorption of 1,4-dioxane, which is difficult to remove and contaminates many public water sources. These materials show promise for removing toxic organic micropollutants and further demonstrate the value of using supramolecular chemistry to design novel absorbents for water purification.<br></p>


1993 ◽  
Vol 8 (3) ◽  
pp. 302-306a ◽  
Author(s):  
Åsa Malmqvist ◽  
Lars Gunnarsson ◽  
Thomas Welander ◽  
Mats Nystrom ◽  
Solvie Herstad-Svard ◽  
...  
Keyword(s):  

1995 ◽  
Vol 32 (9-10) ◽  
pp. 341-348
Author(s):  
V. Librando ◽  
G. Magazzù ◽  
A. Puglisi

The monitoring of water quality today provides a great quantity of data consisting of the values of the parameters measured as a function of time. In the marine environment, and especially in the suspended material, increasing importance is being given to the presence of organic micropollutants, particularly since some are known to be carcinogenic. As the number of measured parameters increases examining the data and their consequent interpretation becomes more difficult. To overcome such difficulties, numerous chemometric techniques have been introduced in environmental chemistry, such as Multivariate Data Analysis (MVDA), Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR). The use of the first technique in this work has been applied to the interpretation of the quality of Augusta bay, by measuring the concentration of numerous organic micropollutants, together with the classical water pollution parameters, in different sites and at different times. The MVDA has highlighted the difference between various sampling sites whose data were initially thought to be similar. Furthermore, it has allowed a choice of more significant parameters for future monitoring and more suitable sampling site locations.


1995 ◽  
Vol 31 (12) ◽  
pp. 21-31 ◽  
Author(s):  
P. G. J. Meiring ◽  
R. A. Oellermann

A system of oxidation ponds in series with a biological trickling filter is described. It was known that this arrangement was incapable of reducing effectively the levels of algae present in the pond liquid even though nitrification was effected because of autotrophic conditions prevailing in the trickling filters. This very low trophic level explained the lack of adsorptive capacity present. By shortcircuiting less than 10 percent of the effluent from a fully loaded primary facultative oxidation pond to the trickling filter, the autotrophuc nature or the film in the trickling filter was sufficiently shifted towards a heterotrophic state that had sufficient adsorptive capacity to retain the majority of the algae. It is concluded that the algae, although being absorbed, stay alive on the film and do not contribute significantly to the carbonaceous load on the trickling filter. Further more the algae, although secluded from all sunlight, actually partake in the purification process, producing an effluent which, unlike a normal humus tank effluent, is surprisingly sparkling clear. This significant observation appears to be in line with laboratory findings by others who, when they artificially immobilised certain species of algae and passed water over them, concluded that the algae retained the potential to remove certain compounds from the water. Conglomerates of biologically flocculated dark-green algae are scoured off the film (or sloughed off as part of the film) and, having been photosynthetically inactive for some days, tend not to float, but settle very rapidly. A very significantly aspect of this development is the great potential it has for practical application in developing countries. The algae sloughed off the media are easily thickened and available for ultimate recovery from the water phase without the addition of chemicals.


2000 ◽  
Vol 42 (12) ◽  
pp. 49-60 ◽  
Author(s):  
P.L. McCarty

Of recent concern is the removal of toxic compounds in wastewaters, soils, and groundwater to concentrations in the low microgram per litre level or less. Threshold limits to bioremediation exist and must be considered in biological treatment schemes to achieve such limits. These limits may be related to reaction kinetics or thermodynamics. Techniques for removing compounds below threshold levels exist that rely on appropriate approaches such as plug flow treatment. Novel biological methods exist for removal of refractory contaminants to low levels. Examples are provided for removal of trace levels of chlorinated solvents, such as tetrachloroethene (PCE) and trichloroethene (TCE), that employ dehalorespiration under anaerobic conditions or cometabolism under aerobic conditions. These approaches are currently being used in engineered systems or through natural attenuation for remediation of soils and groundwater. Successful results offer insights for similar removals of trace chemicals in both aerobic and anaerobic biological systems for treatment of wastewaters and sanitary landfills.


2018 ◽  
Vol 22 (11) ◽  
pp. 1070-1102 ◽  
Author(s):  
Michal Bodzek ◽  
Krystyna Konieczny

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marta O. Barbosa ◽  
Rui S. Ribeiro ◽  
Ana R. L. Ribeiro ◽  
M. Fernando R. Pereira ◽  
Adrián M. T. Silva

AbstractPristine and functionalized multi-walled carbon nanotubes (MWCNTs) were investigated as adsorbent materials inside solid-phase extraction (SPE) cartridges for extraction and preconcentration of 8 EU-relevant organic micropollutants (with different pKa and polarity) before chromatographic analysis of surface water. The recoveries obtained were > 60% for 5/8 target pollutants (acetamiprid, atrazine, carbamazepine, diclofenac, and isoproturon) using a low amount of this reusable adsorbent (50 mg) and an eco-friendly solvent (ethanol) for both conditioning and elution steps. The introduction of oxygenated surface groups in the carbon nanotubes by using a controlled HNO3 hydrothermal oxidation method, considerably improved the recoveries obtained for PFOS (perfluorooctanesulfonic acid) and methiocarb, which was ascribed to the hydrogen bond adsorption mechanism, but decreased those observed for the pesticide acetamiprid and for two pharmaceuticals (carbamazepine and diclofenac), suggesting π–π dispersive interactions. Moreover, a good correlation was found between the recovery obtained for methiocarb and the amount of oxygenated surface groups on functionalized MWCNTs, which was mainly attributed to the increase of phenols and carbonyl and quinone groups. Thus, the HNO3 hydrothermal oxidation method can be used to finely tune the surface chemistry (and texture) of MWCNTs according to the specific micropollutants to be extracted and quantified in real water samples.


Sign in / Sign up

Export Citation Format

Share Document