Photocatalytic removal of emerging contaminants in water and wastewater treatments: a review

2022 ◽  
pp. 543-572
Author(s):  
Johanna Zambrano ◽  
Rubén Irusta-Mata ◽  
Juan J. Jiménez ◽  
Silvia Bolado ◽  
Pedro A. García-Encina
Author(s):  
Yang Hu ◽  
Yue Peng ◽  
Wen Liu ◽  
Dongye Zhao ◽  
Jie Fu

Conventional water/wastewater treatment methods are incapable of removing the majority of Emerging Contaminants (ECs) and a large amount of them and their metabolites are ultimately released to the aquatic environment or drinking water distribution networks. Recently, nanofiltration, a high pressure membrane filtration process, has shown to be superior to other conventional filtration methods, in terms of effluent quality, easy operation and maintenance procedures, low cost, and small required operational space. This chapter provides a comprehensive overview of the most relevant works available in literature reporting the use of nanofiltration for the removal of emerging contaminants from water and wastewater. The fundamental knowledge of nanofiltration such as separation mechanisms, characterization of nanofiltration membranes, and predictive modeling has also been introduced. The literature review has shown that nanofiltration is a promising tool to treat ECs in environmental cleaning and water purification processes.


2019 ◽  
Vol 18 (4) ◽  
pp. 845-852 ◽  
Author(s):  
Debora Fabbri ◽  
María José López-Muñoz ◽  
Alessandro Daniele ◽  
Claudio Medana ◽  
Paola Calza

A good removal efficiency was obtained for a mixture of seven emerging contaminants in wastewater effluent using two catalysts, Ce-ZnO and TiO2-SG, as evidenced by the formation of several transient transformation products.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2680 ◽  
Author(s):  
Emmanuel Kweinor Tetteh ◽  
Mark Opoku Amankwa ◽  
Edward Kwaku Armah ◽  
Sudesh Rathilal

The coronavirus (COVID-19) pandemic is currently posing a significant threat to the world’s public health and social-economic growth. Despite the rigorous international lockdown and quarantine efforts, the rate of COVID-19 infectious cases remains exceptionally high. Notwithstanding, the end route of COVID-19, together with emerging contaminants’ (antibiotics, pharmaceuticals, nanoplastics, pesticide, etc.) occurrence in wastewater treatment plants (WWTPs), poses a great challenge in wastewater settings. Therefore, this paper seeks to review an inter-disciplinary and technological approach as a roadmap for the water and wastewater settings to help fight COVID-19 and future waves of pandemics. This study explored wastewater–based epidemiology (WBE) potential for detecting SARS-CoV-2 and its metabolites in wastewater settings. Furthermore, the prospects of integrating innovative and robust technologies such as magnetic nanotechnology, advanced oxidation process, biosensors, and membrane bioreactors into the WWTPs to augment the risk of COVID-19’s environmental impacts and improve water quality are discussed. In terms of the diagnostics of COVID-19, potential biosensors such as sample–answer chip-, paper- and nanomaterials-based biosensors are highlighted. In conclusion, sewage treatment systems, together with magnetic biosensor diagnostics and WBE, could be a possible way to keep a surveillance on the outbreak of COVID-19 in communities around the globe, thereby identifying hotspots and curbing the diagnostic costs of testing. Photocatalysis prospects are high to inactivate coronavirus, and therefore a focus on safe nanotechnology and bioengineering should be encouraged.


Chemosphere ◽  
2017 ◽  
Vol 189 ◽  
pp. 717-729 ◽  
Author(s):  
Bentuo Xu ◽  
Mohammad Boshir Ahmed ◽  
John L. Zhou ◽  
Ali Altaee ◽  
Minghong Wu ◽  
...  

2015 ◽  
Vol 17 (12) ◽  
pp. 2051-2065 ◽  
Author(s):  
Guillaume Cormier ◽  
Benoit Barbeau ◽  
Hans Peter H. Arp ◽  
Sébastien Sauvé

An increasing diversity of emerging contaminants are entering urban surface water and wastewater, posing unknown risks for the environment.


Encyclopedia ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 131-143
Author(s):  
Savvina Psaltou ◽  
Manassis Mitrakas ◽  
Anastasios Zouboulis

Catalytic membrane ozonation is a hybrid process that combines membrane filtration and catalytic ozonation. The membrane deposited with an appropriate solid material acts as catalyst. As a consequence, the catalytic membrane contactor can act simultaneously as contactor (i.e., improving the transfer/dissolution of gaseous ozone into the liquid phase), as well as reactor (i.e., oxidizing the organic compounds). It can be used in water and wastewater treatment limiting the disadvantages of membrane filtration (i.e., lower removal rates of emerging contaminants or fouling occurrence) and ozonation (i.e., selective oxidation, low mineralization rates, or bromate (BrO3−) formation). The catalytic membrane ozonation process can enhance the removal of micropollutants and bacteria, inhibit or decrease the BrO3− formation and additionally, restrict the membrane fouling (i.e., the major/common problem of membranes’ use). Nevertheless, the higher operational cost is the main drawback of these processes.


Sign in / Sign up

Export Citation Format

Share Document