scholarly journals Fate of COVID-19 Occurrences in Wastewater Systems: Emerging Detection and Treatment Technologies—A Review

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2680 ◽  
Author(s):  
Emmanuel Kweinor Tetteh ◽  
Mark Opoku Amankwa ◽  
Edward Kwaku Armah ◽  
Sudesh Rathilal

The coronavirus (COVID-19) pandemic is currently posing a significant threat to the world’s public health and social-economic growth. Despite the rigorous international lockdown and quarantine efforts, the rate of COVID-19 infectious cases remains exceptionally high. Notwithstanding, the end route of COVID-19, together with emerging contaminants’ (antibiotics, pharmaceuticals, nanoplastics, pesticide, etc.) occurrence in wastewater treatment plants (WWTPs), poses a great challenge in wastewater settings. Therefore, this paper seeks to review an inter-disciplinary and technological approach as a roadmap for the water and wastewater settings to help fight COVID-19 and future waves of pandemics. This study explored wastewater–based epidemiology (WBE) potential for detecting SARS-CoV-2 and its metabolites in wastewater settings. Furthermore, the prospects of integrating innovative and robust technologies such as magnetic nanotechnology, advanced oxidation process, biosensors, and membrane bioreactors into the WWTPs to augment the risk of COVID-19’s environmental impacts and improve water quality are discussed. In terms of the diagnostics of COVID-19, potential biosensors such as sample–answer chip-, paper- and nanomaterials-based biosensors are highlighted. In conclusion, sewage treatment systems, together with magnetic biosensor diagnostics and WBE, could be a possible way to keep a surveillance on the outbreak of COVID-19 in communities around the globe, thereby identifying hotspots and curbing the diagnostic costs of testing. Photocatalysis prospects are high to inactivate coronavirus, and therefore a focus on safe nanotechnology and bioengineering should be encouraged.

Author(s):  
Kristina Tihomirova ◽  
Linda Mezule

Compulsory study course on wastewater treatment and sewage systems contains lectures, classroom calculations, technical project and laboratory practicum. The course is addressing not only the developing skills in wastewater treatment technologies but also provides preparation of professionals that can communicate with institutions involved in water and wastewater sector. Over the years it has been observed that even after receiving the most sophisticated knowledge and highest markings, students often lack skills in practical communication with industry and implementation of theoretical knowledge in praxis. Here we describe student-centred teaching method that is based on the activities that are similar to theatre and allow: (i) the teacher to find and understand the weaker places in student knowledge gained during the semester; (ii) the students to form professional skills during the active communication with colleagues and mentors from industry. The students work in several groups “INDUSTRY”, “MUNICIPALITY” and EXPERTS”, try to find better solution for industrial sewage treatment and cooperation model with the municipality and present their results. After 2 years of the modernisation and adjustment, the training course has created an interest not only from student side but also from the industry representatives that are interested in communication with the new specialists and develop strong contacts with the university.


2018 ◽  
Vol 4 (10) ◽  
pp. 1389-1411 ◽  
Author(s):  
Moses G. Peleyeju ◽  
Omotayo A. Arotiba

Electrochemical advanced oxidation process and heterogeneous photocatalysis have received great attention in the last few years as alternative/complementary water treatment technologies.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4148 ◽  
Author(s):  
Poerio ◽  
Piacentini ◽  
Mazzei

Plastic pollution of the aquatic environment is a major concern considering the disastrous impact on the environment and on human beings. The significant and continuous increase in the production of plastics causes an enormous amount of plastic waste on the land entering the aquatic environment. Furthermore, wastewater treatment plants (WWTPs) are reported as the main source of microplastic and nanoplastic in the effluents, since they are not properly designed for this purpose. The application of advanced wastewater treatment technologies is mandatory to avoid effluent contamination by plastics. A concrete solution can be represented by membrane technologies as tertiary treatment of effluents in integrated systems for wastewater treatment, in particular, for the plastic particles with a smaller size (< 100 nm). In this review, a survey of the membrane processes applied in the plastic removal is analyzed and critically discussed. From the literature analysis, it was found that the removal of microplastic by membrane technology is still insufficient, and without the use of specially designed approaches, with the exception of membrane bioreactors (MBRs).


2019 ◽  
Vol 6 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Manjari Srivastav ◽  
Meenal Gupta ◽  
Sushil K. Agrahari ◽  
Pawan Detwal

Per capita average annual freshwater availability is gradually reduced due to increasing population, urbanization and affluent lifestyles. Hence, management of wastewater is of great concern. The wastewater from different industries can be treated by various conventional treatment methods but these conventional treatment technologies seem to be ineffective for the complete removal of pollutants especially refractory organic compounds that are not readily biodegradable in nature. Detergents, detergent additives, sequestering agents like EDTA, Pesticides, Polycyclic aromatic hydrocarbons, etc. are some of the recalcitrant organic compounds found in the wastewater. One of the treatment technologies for the removal of recalcitrant organic compounds is Advanced Oxidation Process (AOP). The production of hydroxyl free radical is the main mechanism for the AOP. AOP is a promising technology for the treatment of refractory organic compounds due to its low oxidation selectivity and high reactivity of the radical. Hydrogen peroxide (H2O2), Ozonation, Ultra-violet (UV) radiation, H2O2/UV process and Fenton’s reaction are extensively used for the removal of refractory organic compounds thus reducing Chemical Oxygen Demand (COD), Total Organic Carbon (TOC), phenolic compounds, dyes etc. to great extent. From the studies, we found that Fenton’s reagents appear to be most economically practical AOP systems for almost all industries with respect to high pollutant removal efficiency and it is also economical. From the energy point of view, the ozone based process proves to be more efficient but it is costlier than the Fenton’s process.


2010 ◽  
Vol 62 (2) ◽  
pp. 451-456 ◽  
Author(s):  
Eun Ju Lee ◽  
Paul Gene Chung ◽  
Dong Heui Kwak ◽  
Lee Hyung Kim ◽  
Min Jeong Kim

This study on removing non-degradable materials in wastewater focused primarily on advanced oxidation methods such as ozone, ozone/UV and ozone/H2O2. Wastewater treatment using an ionized gas from plasma has been actively progressing. The ionized gas involves reactive species such as O2+, O2− cluster, O radical and OH radical. Since the ionized gas method has such outstanding characteristics as relatively simple structures, non-calorification, non-toxicity and low electricity consumption, it evidently of interest as a new process. A series of experiments were conducted to demonstrate the feasibility of ionized gas as a useful element for the diminution of nondegradable organic matters. On the other hand, a large amount of organic matters were changed to hydrophilic and the compounds containing aromatic functional group gradually decreased. The results implied that the ionized gas has been able to degrade the non-biodegradable organic matters. Therefore, the oxidation process by using an ionized gas process could be considered as an effective alternative unit in water and wastewater treatment plants.


2021 ◽  
Vol 3 (1) ◽  
pp. 58-63
Author(s):  
Sevgi Günes-Durak

Microplastics are less than 5 mm in length and are polymer chains containing carbon and hydrogen atoms. It poses a direct and indirect danger to all living things in the ecosystem. It is found in products such as microplastics, synthetic clothes, plastic bags and bottles, some cleaners, health and beauty products, toothpaste and causes both soil and water pollution from wastewater systems and solid waste. This situation not only threatens the life of creatures living in aquatic ecosystems such as rivers, lakes, seas, and oceans but also penetrates the human body through the food chain, causing various health problems, especially cancer. As with all environmental pollutants, microplastics need to reduce pollution at the source. In this research, treatment methods applied to remove microplastics that cannot be prevented at source from the water ecosystem were investigated and evaluated. According to the results, in wastewater treatment plants, the highest efficiency of microplastic removal is provided by membrane bioreactors. However, by imitating the microplastic removal capabilities and structures of living things in nature, studies on the discovery of new methods of microplastic removal can also be conducted.


2011 ◽  
Vol 64 (11) ◽  
pp. 2230-2238 ◽  
Author(s):  
Y. Lester ◽  
D. Avisar ◽  
I. Gozlan ◽  
H. Mamane

Water and wastewater effluents contain a vast range of pharmaceutical chemicals. The present study aims to determine the potential of the advanced oxidation technology UV/H2O2/O3 and its sub-processes (i.e. UV, UV/H2O2, UV/O3, O3 and H2O2/O3) for the degradation of the antibiotics ciprofloxacin (CIP) and trimethoprim (TMP), and the antineoplastic drug cyclophosphamide (CPD) from water. Creating AOP conditions improved in most cases the degradation rate of the target compounds (compared with O3 and UV alone). H2O2 concentration was found to be an important parameter in the UV/H2O2 and H2O2/O3 sub-processes, acting as •OH initiator as well as •OH scavenger. Out of the examined processes, O3 had the highest degradation rate for TMP and H2O2/O3 showed highest degradation rate for CIP and CPD. The electrical energy consumption for both CIP and CPD, as calculated using the EEO parameter, was in the following order: UV &gt; UV/O3 &gt; UV/H2O2/O3 &gt; O3 &gt; H2O2/O3. Whereas for TMP O3 was shown to be the most electrical energy efficient. Twelve degradation byproducts were identified following direct UV photolysis of CIP.


2000 ◽  
Vol 42 (12) ◽  
pp. 61-64 ◽  
Author(s):  
E.H. Bryan

Research aimed at solving important environmental problems at all scales ranging from global to individual will continue to be an essential part of the process by which sustainability of life on earth may be achieved. Solutions to environmental problems that relate to water are especially critical to this process and are likely to involve use of innovative technologies that emerge from research with sufficient promise to justify their development, a process that evaluates them at a scale that will yield engineering design parameters and confidence in their technical performance and economic value. Privatization of water and wastewater systems and mergers of equipment manufacturers may provide the economic bases needed for development of innovative water and wastewater treatment technologies in the 21st Century that have emerged from research in the 19th and 20th Centuries but have not as yet been fully developed or adopted.


Sign in / Sign up

Export Citation Format

Share Document