Measures for improving reduction factor of a feeding line

2022 ◽  
pp. 105-127
Author(s):  
Ljubivoje M. Popović
Keyword(s):  
2019 ◽  
Vol 85 (1(I)) ◽  
pp. 64-71 ◽  
Author(s):  
M. M. Gadenin

The cycle configuration at two-frequency loading regimes depends on the number of parameters including the absolute values of the frequencies and amplitudes of the low-frequency and high-frequency loads added during this mode, the ratio of their frequencies and amplitudes, as well as the phase shift between these harmonic components, the latter having a significant effect only with a small ratio of frequencies. Presence of such two-frequency regimes or service loading conditions for parts of machines and structures schematized by them can significantly reduce their endurance. Using the results of experimental studies of changes in the endurance of a two-frequency loading of specimens of cyclically stable, cyclically softened and cyclically hardened steels under rigid conditions we have shown that decrease in the endurance under the aforementioned conditions depends on the ratio of frequencies and amplitudes of operation low-frequency low-cycle and high-frequency vibration stresses, and, moreover, the higher the level of the ratios of amplitudes and frequencies of those stacked harmonic processes of loading the greater the effect. It is shown that estimation of such a decrease in the endurance compared to a single frequency loading equal in the total stress (strains) amplitudes can be carried out using an exponential expression coupling those endurances through a parameter (reduction factor) containing the ratio of frequencies and amplitudes of operation cyclic loads and characteristic of the material. The reduction is illustrated by a set of calculation-experimental curves on the corresponding diagrams for each of the considered types of materials and compared with the experimental data.


2021 ◽  
pp. 108128652110214
Author(s):  
Ivan Argatov

The problem of a mode I crack having multiple contacts between the crack faces is considered. In the case of small contact islands of arbitrary shapes, which are arbitrarily located inside the crack, the first-order asymptotic model for the crack opening displacement is constructed using the method of matched asymptotic expansions. The case of a penny-shaped crack has been studied in detail. A scaling hypothesis for the compliance reduction factor is formulated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinhua Sheng ◽  
Yuchen Shi ◽  
Qiao Zhang

AbstractGeneralized auto-calibrating partially parallel acquisitions (GRAPPA) and other parallel Magnetic Resonance Imaging (pMRI) methods restore the unacquired data in k-space by linearly calculating the undersampled data around the missing points. In order to obtain the weight of the linear calculation, a small number of auto-calibration signal (ACS) lines need to be sampled at the center of the k-space. Therefore, the sampling pattern used in this type of method is to full sample data in the middle area and undersample in the outer k-space with nominal reduction factors. In this paper, we propose a novel reconstruction method with a multiple variable density sampling (MVDS) that is different from traditional sampling patterns. Our method can significantly improve the image quality using multiple reduction factors with fewer ACS lines. Specifically, the traditional sampling pattern only uses a single reduction factor to uniformly undersample data in the region outside the ACS, but we use multiple reduction factors. When sampling the k-space data, we keep the ACS lines unchanged, use a smaller reduction factor for undersampling data near the ACS lines and a larger reduction factor for the outermost part of k-space. The error is lower after reconstruction of this region by undersampled data with a smaller reduction factor. The experimental results show that with the same amount of data sampled, using NL-GRAPPA to reconstruct the k-space data sampled by our method can result in lower noise and fewer artifacts than traditional methods. In particular, our method is extremely effective when the number of ACS lines is small.


2021 ◽  
Vol 37 ◽  
pp. 318-326
Author(s):  
Yuzhen Zhao ◽  
Dike Hu ◽  
Song Wu ◽  
Xinjun Long ◽  
Yongshou Liu

Abstract In this paper, the dynamics of axially functionally graded (AFG) conical pipes conveying fluid are analyzed. The materials are distributed along the conical pipe axis as a volume fraction function. Either the elastic modulus or the density of the AFG conical pipe is assumed to vary from the inlet to the outlet. The governing equation of the AFG conical pipe is derived using the Hamiltonian principle and solved by the differential quadrature method. The effects of the volume fraction index, volume fraction function type and reduction factor on the natural frequency and critical velocity are analyzed. It is found that for a power function volume fraction type, the natural frequency and critical velocity increase with increasing volume fraction index and clearly increase when the volume fraction index is within the range (0, 10). For an exponential function volume fraction type, the natural frequency and critical velocity change rapidly within the range (−10, 10), besides the above range the relationship between the natural frequency, critical velocity and volume fraction index is approximate of little change. The natural frequency and critical velocity decrease linearly with increasing reduction factor.


1972 ◽  
Vol 50 (10) ◽  
pp. 1468-1471 ◽  
Author(s):  
Alan D. Westland

An expression for the magnetic susceptibility of octahedral d1 complexes is derived exactly in terms of an orbital reduction factor k taking into account the presence of the formal 2E excited state. Sample calculations show that the improved expression gives results for susceptibility which are lower at times by several percent from those given by previous expressions. The results given by Figgis using Kotani's method are adequately precise when the spin–orbit coupling constant is no larger than ~0.1 Dq.


Author(s):  
K A Kazim ◽  
B Maiti ◽  
P Chand

Centrifugal pumps are being used increasingly for transportation of slurries through pipelines. To design a slurry handling system it is essential to have a knowledge of the effects of suspended solids on the pump performance. A new correlation to predict the head reduction factor for centrifugal pumps handling solids has been developed. This correlation takes into account the individual effect of particle size, particle size distribution, specific gravity and concentration of solids on the centrifugal pump performance characteristics. The range of validity of the correlation has been verified by experiment and by using experimental data available from the literature. The present correlation shows better agreement with the experimental data than existing correlations.


Sign in / Sign up

Export Citation Format

Share Document