The Potential Role of Biotechnology in Addressing the Long-Term Problem of Climate Change in the Context of Global Energy and Economic Systems

Author(s):  
J EDMONDS ◽  
J CLARKE ◽  
J DOOLEY ◽  
S KIM ◽  
R IZAURRALDE ◽  
...  
2020 ◽  
Author(s):  
Marc Jaxa-Rozen ◽  
Evelina Trutnevyte

<p>Solar photovoltaic (PV) technology has been the fastest-growing renewable energy technology in recent years. Since 2009, it has in fact experienced the largest capacity growth of any power generation technology, with benchmark levelized costs falling by four-fifths [1]. In addition, the global technical potential of PV largely exceeds global primary energy demand [2]. Nonetheless, PV typically only appears as a relatively marginal option in long-term energy modelling studies and scenarios. These include the mitigation pathways evaluated in the context of the work of the Intergovernmental Panel on Climate Change (IPCC), which rely on integrated assessment models (IAMs) of climate change and have in the past underestimated PV growth as compared to observed rates of adoption [2]. Similarly, global energy projections, such as the International Energy Agency's World Energy Outlook, have been relatively conservative regarding the role of solar PV in long-term energy transitions.</p><p>In order to better understand the long-term global role of solar PV as perceived by various modeling communities, this work synthesizes a broad ensemble of scenarios for global PV adoption at the 2050 horizon. This ensemble includes 784 IAM-based scenarios from the IPCC SR15 and AR5 databases, and 82 other systematically selected scenarios published over the 2010-2019 period in the academic and gray literature, such as PV-focused techno-economic analyses and global energy outlooks. The scenarios are analyzed using a descriptive framework which combines scenario indicators (e.g. mitigation policies depicted in a scenario), model indicators (e.g. the representation of technological change in the underlying model), and meta-indicators (e.g. the type of institution which authored a scenario). We extend this scenario framework to include a text-mining approach, using Latent Dirichlet Allocation (LDA) to associate scenarios with different textual perspectives identified in the ensemble, such as energy access or renewable energy transitions. We then use a scenario discovery approach to identify the combinations of indicators which are most strongly associated with different regions of the scenario space.</p><p>Preliminary results indicate that the date of publication of a scenario has a predominant influence on projected PV adoption values: scenarios published in the first half of the 2010s thus tend to represent considerably lower PV adoption levels. In parallel, higher projected values are more strongly associated with renewable-focused institutions. Increasing the institutional diversity of scenario ensembles may thus lead to a broader range of considered futures [3].</p><p> <br>References<br>[1] Frankfurt School-UNEP Centre, “Global Trends in Renewable Energy Investment 2019,” Frankfurt, Germany, 2019.<br>[2] F. Creutzig, P. Agoston, J. C. Goldschmidt, G. Luderer, G. Nemet, and R. C. Pietzcker, “The underestimated potential of solar energy to mitigate climate change,” Nat Energy, vol. 2, no. 9, pp. 1–9, Aug. 2017, doi: 10.1038/nenergy.2017.140.<br>[3] E. Trutnevyte, W. McDowall, J. Tomei, and I. Keppo, “Energy scenario choices: Insights from a retrospective review of UK energy futures,” Renewable and Sustainable Energy Reviews, vol. 55, pp. 326–337, Mar. 2016, doi: 10.1016/j.rser.2015.10.067.</p>


Author(s):  
James ROSE

ABSTRACT Within the context of the work and achievements of James Croll, this paper reviews the records of direct observations of glacial landforms and sediments made by Charles Lyell, Archibald and James Geikie and James Croll himself, in order to evaluate their contributions to the sciences of glacial geology and Quaternary environmental change. The paper outlines the social and physical environment of Croll's youth and contrasts this with the status and experiences of Lyell and the Geikies. It also outlines the character and role of the ‘Glasgow School’ of geologists, who stimulated Croll's interest into the causes of climate change and directed his focus to the glacial and ‘interglacial’ deposits of central Scotland. Contributions are outlined in chronological order, drawing attention to: (i) Lyell's high-quality observations and interpretations of glacial features in Glen Clova and Strathmore and his subsequent rejection of the glacial theory in favour of processes attributed to floating icebergs; (ii) the significant impact of Archibald Geikie's 1863 paper on the ‘glacial drift of Scotland’, which firmly established the land-ice theory; (iii) the fact that, despite James Croll's inherent dislike of geology and fieldwork, he provided high-quality descriptions and interpretations of the landforms and sediments of central Scotland in order to test his theory of climate change; and (iv) the great communication skills of James Geikie, enhanced by contacts and evidence from around the world. It is concluded that whilst direct observations of glacial landforms and sediments were critical to the long-term development of the study of glaciation, the acceptance of this theory was dependent also upon the skills, personality and status of the Geikies and Croll, who developed and promoted the concepts. Sadly, the subsequent rejection of the land-ice concept by Lyell resulted in the same factors challenging the acceptance of the glacial theory.


1995 ◽  
Vol 15 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Hiroaki Suzuki ◽  
Liliana Schaefer ◽  
Hong Ling ◽  
Roland M. Schaefer ◽  
Jobst Dämmrich ◽  
...  

2021 ◽  
Vol 22 (24) ◽  
pp. 13609
Author(s):  
Lucas Wauters ◽  
Raúl Y. Tito ◽  
Matthias Ceulemans ◽  
Maarten Lambaerts ◽  
Alison Accarie ◽  
...  

Proton pump inhibitors (PPI) may improve symptoms in functional dyspepsia (FD) through duodenal eosinophil-reducing effects. However, the contribution of the microbiome to FD symptoms and its interaction with PPI remains elusive. Aseptic duodenal brushings and biopsies were performed before and after PPI intake (4 weeks Pantoprazole 40 mg daily, FD-starters and controls) or withdrawal (2 months, FD-stoppers) for 16S-rRNA sequencing. Between- and within-group changes in genera or diversity and associations with symptoms or duodenal factors were analyzed. In total, 30 controls, 28 FD-starters and 19 FD-stoppers were followed. Mucus-associated Porphyromonas was lower in FD-starters vs. controls and correlated with symptoms in FD and duodenal eosinophils in both groups, while Streptococcus correlated with eosinophils in controls. Although clinical and eosinophil-reducing effects of PPI therapy were unrelated to microbiota changes in FD-starters, increased Streptococcus was associated with duodenal PPI effects in controls and remained higher despite withdrawal of long-term PPI therapy in FD-stoppers. Thus, duodenal microbiome analysis demonstrated differential mucus-associated genera, with a potential role of Porphyromonas in FD pathophysiology. While beneficial effects of short-term PPI therapy were not associated with microbial changes in FD-starters, increased Streptococcus and its association with PPIeffects in controls suggest a role for duodenal dysbiosis after long-term PPI therapy.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mohammed M. Almutairi ◽  
Farzane Sivandzade ◽  
Thamer H. Albekairi ◽  
Faleh Alqahtani ◽  
Luca Cucullo

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical manifestations of COVID-19 include dry cough, difficult breathing, fever, fatigue, and may lead to pneumonia and respiratory failure. There are significant gaps in the current understanding of whether SARS-CoV-2 attacks the CNS directly or through activation of the peripheral immune system and immune cell infiltration. Although the modality of neurological impairments associated with COVID-19 has not been thoroughly investigated, the latest studies have observed that SARS-CoV-2 induces neuroinflammation and may have severe long-term consequences. Here we review the literature on possible cellular and molecular mechanisms of SARS-CoV-2 induced-neuroinflammation. Activation of the innate immune system is associated with increased cytokine levels, chemokines, and free radicals in the SARS-CoV-2-induced pathogenic response at the blood-brain barrier (BBB). BBB disruption allows immune/inflammatory cell infiltration into the CNS activating immune resident cells (such as microglia and astrocytes). This review highlights the molecular and cellular mechanisms involved in COVID-19-induced neuroinflammation, which may lead to neuronal death. A better understanding of these mechanisms will help gain substantial knowledge about the potential role of SARS-CoV-2 in neurological changes and plan possible therapeutic intervention strategies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nadim Cassir ◽  
Isabelle Grandvuillemin ◽  
Manon Boxberger ◽  
Priscilla Jardot ◽  
Farid Boubred ◽  
...  

Necrotizing enterocolitis is a life-threatening acquired gastrointestinal disorder among preterm neonates and is associated with a high mortality rate and long-term neurodevelopmental morbidity. No etiologic agent has been definitively established; nonetheless, the most implicated bacteria include members of the Clostridium genus. We reported here on a case of Clostridium neonatale bacteremia in a preterm neonate with necrotizing enterocolitis, providing more information regarding the potential role of this bacterium in pathogenesis of necrotizing enterocolitis. We emphasized the sporulating form of C. neonatale that confers resistance to disinfectants usually applied for the hospital environmental cleaning. Further works are needed to establish the causal relationship between the occurrence of NEC and the isolation of C. neonatale, with promising perspectives in terms of diagnostic and therapeutic management.


Sign in / Sign up

Export Citation Format

Share Document