Dislocation structure and corduroy contrast in a 316L alloy fatigued at (0.3–0.5) Tm

Author(s):  
M. Gerland ◽  
J. Mendez ◽  
J. Lépinoux ◽  
P. Violan
Author(s):  
B. Cunningham ◽  
D.G. Ast

There have Been a number of studies of low-angle, θ < 4°, [10] tilt boundaries in the diamond lattice. Dislocations with Burgers vectors a/2<110>, a/2<112>, a<111> and a<001> have been reported in melt-grown bicrystals of germanium, and dislocations with Burgers vectors a<001> and a/2<112> have been reported in hot-pressed bicrystals of silicon. Most of the dislocations were found to be dissociated, the dissociation widths being dependent on the tilt angle. Possible dissociation schemes and formation mechanisms for the a<001> and a<111> dislocations from the interaction of lattice dislocations have recently been given.The present study reports on the dislocation structure of a 10° [10] tilt boundary in chemically vapor deposited silicon. The dislocations in the boundary were spaced about 1-3nm apart, making them difficult to resolve by conventional diffraction contrast techniques. The dislocation structure was therefore studied by the lattice-fringe imaging technique.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Author(s):  
C. W. Price

Little evidence exists on the interaction of individual dislocations with recrystallized grain boundaries, primarily because of the severely overlapping contrast of the high dislocation density usually present during recrystallization. Interesting evidence of such interaction, Fig. 1, was discovered during examination of some old work on the hot deformation of Al-4.64 Cu. The specimen was deformed in a programmable thermomechanical instrument at 527 C and a strain rate of 25 cm/cm/s to a strain of 0.7. Static recrystallization occurred during a post anneal of 23 s also at 527 C. The figure shows evidence of dissociation of a subboundary at an intersection with a recrystallized high-angle grain boundary. At least one set of dislocations appears to be out of contrast in Fig. 1, and a grainboundary precipitate also is visible. Unfortunately, only subgrain sizes were of interest at the time the micrograph was recorded, and no attempt was made to analyze the dislocation structure.


Author(s):  
H. P. Karnthaler ◽  
A. Korner

In f.c.c. metals slip is observed to occur generally on {111} planes. Glide dislocations on intersecting {111} planes can react with each other and form Lomer-Cottrell locks which lie along a <110> direction and are sessile since they are split on two {111} planes. Cottrell already pointed out that these dislocations could glide on {001} planes if they were not split. The first study of this phenomenon has been published recently. It is the purpose of this paper to report some interesting new details of the dislocations gliding on {001} planes in pure Ni, Cu, and Ag deformed at room temperature.Single crystals are grown with standard orientation and strained into stage II. The crystals are sliced parallel to the (001) planes. The dislocation structure is studied by TEM and the Burgers vectors ḇ and glide planes of the dislocations are determined unambiguously.In Fig.l primary P and secondary S dislocations react and form composite dislocations K.


Author(s):  
Q.Z. Chen ◽  
X.F. Wu ◽  
T. Ko

Some butterfly martensite nuclei were observed in an Fe-27.6Ni-0.89V-0.05C alloy. The alloy was austenitized at 1200°C for 1 hour. Some samples were aged at 850° C for 40 minutes and quenched in 10% brine at room temperature. All the samples were cooled in ethyl alcohol for martensite transformation.A nucleus in an unaged specimen is shown in Fig.1. The nucleus has certain contrast different from the matrix and is shaped like one wing of a butter fly martensite. The SADP of the circled region is measured to be: da=dh, and approximate to dγ(111) and dm(110) with ∠AOB = 55° . It is similar to [011]f.c.c and b patterns in the anglez ∠AOB and the ratio ra/rb, respectively. The SADP shows that the structure of the nucleus is between f.c.c and b.c.c. The dislocation structure within the nucleus is shown in Fig.2. Their Burgers vectors and line directions are also given in it. There are many long dislocations near it without dislocations piled up as shown in Fig.3.Long dislocations are closed at one end as an envelope.


1985 ◽  
Vol 20 (5) ◽  
pp. 689-691
Author(s):  
V. V. Kirichfnko ◽  
N. N. Voinova

Sign in / Sign up

Export Citation Format

Share Document