Bright field and weak-beam images of dislocations gliding on (001) planes in F.C.C. metals

Author(s):  
H. P. Karnthaler ◽  
A. Korner

In f.c.c. metals slip is observed to occur generally on {111} planes. Glide dislocations on intersecting {111} planes can react with each other and form Lomer-Cottrell locks which lie along a <110> direction and are sessile since they are split on two {111} planes. Cottrell already pointed out that these dislocations could glide on {001} planes if they were not split. The first study of this phenomenon has been published recently. It is the purpose of this paper to report some interesting new details of the dislocations gliding on {001} planes in pure Ni, Cu, and Ag deformed at room temperature.Single crystals are grown with standard orientation and strained into stage II. The crystals are sliced parallel to the (001) planes. The dislocation structure is studied by TEM and the Burgers vectors ḇ and glide planes of the dislocations are determined unambiguously.In Fig.l primary P and secondary S dislocations react and form composite dislocations K.

Author(s):  
X. F. Wu

A number of intermetallic compounds with the L12 structure exhibit a strange increase in the flow stress and work-hardening rate with increasing temperature. Despite the success of some model in explaining macroscopic properties, the detailed dislocation processes of model that are assumed to take place have not been observed in microscope. This work is an attempt to determine how the dislocation fine structure is related to the deformation behaviour of L12.Single crystal Ni-23Al-1Hf-0.1B(at%) was used in the present study. direction was chosen as compression axis. Samples were deformed to plastic strain of 6%, specimens were cut parallel to by spark erosion. Fined electropolishing was donein solution of 1% perchloric acid in methanol at −50°c and 30V. The g/3g diffraction condition used in weak beam observation.Fig1 shows the dislocation structure in foil. Long fairly straight screw dislocations with b=a[011] are imaged. The formation of dipoles is regarded as a characteristic and unusual feature of the dislocation structure. This indicates that annihilation is difficult at room temperature deformation. Weak beam images of superlattice dislocations are shown in fig.2 by using different reflections. The dislocation CC is long straight screw dislocation.


1988 ◽  
Vol 133 ◽  
Author(s):  
G. Dirras ◽  
P. Beauchamp ◽  
P. Veyssière

ABSTRACTβ-brass single crystals oriented along <001> were deformed between room temperature and 300°C. The deformation microstructure and dissociation properties were studied by transmission electron microscopy under weak-beam imaging conditions.Whatever the deformation temperature, superdislocations with <111> Burgers vector and strong edge component dominate within the microstructure. In addition, below the temperature of the flow stress peak (≈ 250°C), the density of screw relative to mixed superdislocations decreases as straining temperature increases. Dissociation does not always occur on the slip plane neither does it proceed exclusively by glide, even in samples deformed at 100°C.


1994 ◽  
Vol 9 (3) ◽  
pp. 553-562 ◽  
Author(s):  
S. Zhang ◽  
W.W. Milligan ◽  
D.E. Mikkola

Dislocation dissociations in Al3Ti alloys modified with Mn to stabilize the L12 cubic structure have been studied with transmission electron microscopy and computer simulation of images. Dissociations of a〈110〉 superdislocations into pairs of a/2〈110〉 partials bounding APB's were observed at all temperatures from room temperature to 700 °C. Asymmetrical image contrast, in which one of the a/2〈110〉 partials gives a much more intense image than the other, was observed at small separations of the partials. Although some investigators have taken such asymmetry to suggest SISF-type dissociations in similar alloys, the current work demonstrates that the asymmetry is fully consistent with APB-type dissociation. Further, the degree of image asymmetry decreases as the spacing of the partials increases. It is concluded that identification of the partial dislocations with “near-invisibility criteria” for fractional values of g · b is unreliable, and that computer simulation of images is useful for identification of the partials. However, as expected, the ability to distinguish simulated bright-field images of APB- and SISF-type dissociations also becomes difficult as the separation of the partials becomes very small. Under these conditions, both weak-beam imaging and simulations are necessary to identify the dissociations. Weak-beam simulations have shown that fringe contrast must be present under certain imaging conditions for SISF dissociations, and this contrast has never been observed in this study or in previously published studies of dissociated single superdislocations in cubic Al3Ti alloys. Finally, APB contrast formed with superlattice reflection imaging has been observed between partials on both {111} and {100} after deformation at 700 °C.


Author(s):  
R. W. Carpenter ◽  
M. H. Loretto ◽  
Remag

In this paper some observations of dislocation structure in a neutron-irradiated Al—4% Cu alloy containing θ' precipitate are reported. Both weak-beam dark-field and strong-beam bright-field methods were used. During irradiation, coherency loss begins to occur, and swelling resistance decreases. The WBDF method is necessary to resolve dislocation configurations near the matrix/precipitate interfaces.The microstructure of the alloy after a neutron fluence of 2.8 x 1025 n/m2(E>0.1 MeV,T ∼ 330 K) is shown in WBDF (Fig. 1). The main features of the irradiated microstructure are the θ' precipitates, faulted and unfaulted loops with diameter ∽30 nm in the matrix, a few long dislocations lying in the precipitate/matrix interfaces, and some small (< 10 nm) contrast features in the background. The latter may be a result of the small amount of Si formed during irradiation by transmutation of the Al. Of primary present interest are dislocations in and near the interfaces.


1990 ◽  
Vol 213 ◽  
Author(s):  
Mao Wen ◽  
Dongliang Lin

ABSTRACTDislocation structure in a directionally solidified Ni3Al-based alloy deformed at temperatures below the peak in flow stress has been studied by the weak beam TEM technique. At room temperature, the screw superdislocations are partly transformed into Kear-Wilsdorf configurations. With increasing temperatures, the transformed Kear-Wilsdorf parts increase until the temperature reaches 450°C, at which the screw superdislocations are wholly transformed. Bending of the Kear-Wilsdorf configurations on {0101} planes is observed at 450°C, which is believed to be the cause of interaction of Kear-Wilsdorf configurations with superkinks. The Contribution of superkink motion to deformation is discussed. The results suggest that deformation in this temperature range occurs primarily by the slip of non-screw components on {lll} planes, which is consistent with the widely accepted cross slip pinning model.


1996 ◽  
Vol 460 ◽  
Author(s):  
Filip Král ◽  
Peter Schwander ◽  
Gernot Kostorz

ABSTRACTThe influence of Cr additions on the positive temperature dependence of the critical resolved shear stress of Fe3Al is investigated. Single crystals of binary Fe-28 at.% Al and ternary Fe-28 at.% Al-6 at.% Cr with different orientations are deformed in uniaxial compression between room temperature and 1273 K. The dislocation arrangement and the dissociation of superdislocations are studied by transmission electron microscopy using the weak-beam technique. The operative slip systems are discussed on the basis of the direct measurements of the antiphase boundary energies and of the activation volume.


Author(s):  
P. Humble

There has been sustained interest over the last few years into both the intrinsic (primary and secondary) structure of grain boundaries and the extrinsic structure e.g. the interaction of matrix dislocations with the boundary. Most of the investigations carried out by electron microscopy have involved only the use of information contained in the transmitted image (bright field, dark field, weak beam etc.). Whilst these imaging modes are appropriate to the cases of relatively coarse intrinsic or extrinsic grain boundary dislocation structures, it is apparent that in principle (and indeed in practice, e.g. (1)-(3)) the diffraction patterns from the boundary can give extra independent information about the fine scale periodic intrinsic structure of the boundary.In this paper I shall describe one investigation into each type of structure using the appropriate method of obtaining the necessary information which has been carried out recently at Tribophysics.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Author(s):  
J. M. Oblak ◽  
B. H. Kear

The “weak-beam” and systematic many-beam techniques are the currently available methods for resolution of closely spaced dislocations or other inhomogeneities imaged through strain contrast. The former is a dark field technique and image intensities are usually very weak. The latter is a bright field technique, but generally use of a high voltage instrument is required. In what follows a bright field method for obtaining enhanced resolution of partial dislocations at 100 KV accelerating potential will be described.A brief discussion of an application will first be given. A study of intermediate temperature creep processes in commercial nickel-base alloys strengthened by the Ll2 Ni3 Al γ precipitate has suggested that partial dislocations such as those labelled 1 and 2 in Fig. 1(a) are in reality composed of two closely spaced a/6 <112> Shockley partials. Stacking fault contrast, when present, tends to obscure resolution of the partials; thus, conditions for resolution must be chosen such that the phase shift at the fault is 0 or a multiple of 2π.


Author(s):  
N.J. Long ◽  
M.H. Loretto ◽  
C.H. Lloyd

IntroductionThere have been several t.e.m. studies (1,2,3,4) of the dislocation arrangements in the matrix and around the particles in dispersion strengthened single crystals deformed in single slip. Good agreement has been obtained in general between the observed structures and the various theories for the flow stress and work hardening of this class of alloy. There has been though some difficulty in obtaining an accurate picture of these arrangements in the case when the obstacles are large (of the order of several 1000's Å). This is due to both the physical loss of dislocations from the thin foil in its preparation and to rearrangement of the structure on unloading and standing at room temperature under the influence of the very high localised stresses in the vicinity of the particles (2,3).This contribution presents part of a study of the Cu-Cr-SiO2 system where age hardening from the Cu-Cr and dispersion strengthening from Cu-Sio2 is combined.


Sign in / Sign up

Export Citation Format

Share Document