Effect of Nitrogen Concentration on Temperature Dependent Mechanical Properties of Vanadium

1979 ◽  
pp. 995-1000
Author(s):  
O.N. Carlson ◽  
D.K. Rehbein ◽  
K.E. Bogacik
Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 968
Author(s):  
Dong Xing ◽  
Xinzhou Wang ◽  
Siqun Wang

In this paper, Berkovich depth-sensing indentation has been used to study the effects of the temperature-dependent quasi-static mechanical properties and creep deformation of heat-treated wood at temperatures from 20 °C to 180 °C. The characteristics of the load–depth curve, creep strain rate, creep compliance, and creep stress exponent of heat-treated wood are evaluated. The results showed that high temperature heat treatment improved the hardness of wood cell walls and reduced the creep rate of wood cell walls. This is mainly due to the improvement of the crystallinity of the cellulose, and the recondensation and crosslinking reaction of the lignocellulose structure. The Burgers model is well fitted to study the creep behavior of heat-treated wood cell walls under different temperatures.


2017 ◽  
Vol 09 (05) ◽  
pp. 1750076 ◽  
Author(s):  
Şeref Doğuşcan Akbaş

The purpose of this study is to investigate the thermal effects on the free vibration of functionally graded (FG) porous deep beams. Mechanical properties of the FG deep beam are temperature-dependent and vary across the height direction with different porosity models. The governing equations problem is obtained by using the Hamilton’s principle. In the solution of the problem, plane piecewise solid continua model and finite element method are used. The effects of porosity parameters, material distribution, porosity models and temperature rising on the vibration characteristics are presented and discussed with porosity effects for FG deep beams.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2111
Author(s):  
Pawan Kumar Tripathi ◽  
Yu-Chen Chiu ◽  
Somnath Bhowmick ◽  
Yu-Chieh Lo

High strength and ductility, often mutually exclusive properties of a structural material, are also responsible for damage tolerance. At low temperatures, due to high surface energy, single element metallic nanowires such as Ag usually transform into a more preferred phase via nucleation and propagation of partial dislocation through the nanowire, enabling superplasticity. In high entropy alloy (HEA) CoNiCrFeMn nanowires, the motion of the partial dislocation is hindered by the friction due to difference in the lattice parameter of the constituent atoms which is responsible for the hardening and lowering the ductility. In this study, we have examined the temperature-dependent superplasticity of single component Ag and multicomponent CoNiCrFeMn HEA nanowires using molecular dynamics simulations. The results demonstrate that Ag nanowires exhibit apparent temperature-dependent superplasticity at cryogenic temperature due to (110) to (100) cross-section reorientation behavior. Interestingly, HEA nanowires can perform exceptional strength-ductility trade-offs at cryogenic temperatures. Even at high temperatures, HEA nanowires can still maintain good flow stress and ductility prior to failure. Mechanical properties of HEA nanowires are better than Ag nanowires due to synergistic interactions of deformation twinning, FCC-HCP phase transformation, and the special reorientation of the cross-section. Further examination reveals that simultaneous activation of twining induced plasticity and transformation induced plasticity are responsible for the plasticity at different stages and temperatures. These findings could be very useful for designing nanowires at different temperatures with high stability and superior mechanical properties in the semiconductor industry.


2019 ◽  
Vol 127 ◽  
pp. 105267 ◽  
Author(s):  
Nakyeong Lee ◽  
Hyung-Seok Oh ◽  
Hee-Mock Oh ◽  
Hee-Sik Kim ◽  
Chi-Yong Ahn

2020 ◽  
Vol 51 (10) ◽  
pp. 5088-5100
Author(s):  
G. K. Bansal ◽  
P. S. M. Jena ◽  
Chiradeep Ghosh ◽  
V. C. Srivastava ◽  
V. Rajinikanth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document