Lipid Type and Location of the Relative Humidity Gradient Influence on the Barrier Properties of Lipids to Water Vapor

1994 ◽  
pp. 225-239 ◽  
Author(s):  
O. Fennema ◽  
I.G. Donhowe ◽  
J.J. Kester
2021 ◽  
Vol 13 (11) ◽  
pp. 2179
Author(s):  
Pedro Mateus ◽  
Virgílio B. Mendes ◽  
Sandra M. Plecha

The neutral atmospheric delay is one of the major error sources in Space Geodesy techniques such as Global Navigation Satellite Systems (GNSS), and its modeling for high accuracy applications can be challenging. Improving the modeling of the atmospheric delays (hydrostatic and non-hydrostatic) also leads to a more accurate and precise precipitable water vapor estimation (PWV), mostly in real-time applications, where models play an important role, since numerical weather prediction models cannot be used for real-time processing or forecasting. This study developed an improved version of the Hourly Global Pressure and Temperature (HGPT) model, the HGPT2. It is based on 20 years of ERA5 reanalysis data at full spatial (0.25° × 0.25°) and temporal resolution (1-h). Apart from surface air temperature, surface pressure, zenith hydrostatic delay, and weighted mean temperature, the updated model also provides information regarding the relative humidity, zenith non-hydrostatic delay, and precipitable water vapor. The HGPT2 is based on the time-segmentation concept and uses the annual, semi-annual, and quarterly periodicities to calculate the relative humidity anywhere on the Earth’s surface. Data from 282 moisture sensors located close to GNSS stations during 1 year (2020) were used to assess the model coefficients. The HGPT2 meteorological parameters were used to process 35 GNSS sites belonging to the International GNSS Service (IGS) using the GAMIT/GLOBK software package. Results show a decreased root-mean-square error (RMSE) and bias values relative to the most used zenith delay models, with a significant impact on the height component. The HGPT2 was developed to be applied in the most diverse areas that can significantly benefit from an ERA5 full-resolution model.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2523
Author(s):  
Janusz W. Sikora ◽  
Łukasz Majewski ◽  
Andrzej Puszka

Four different plastics were tested: potato starch based plastic (TPS-P)–BIOPLAST GF 106/02; corn starch based plastic (TPS-C)–BioComp BF 01HP; polylactic acid (polylactide) plastic (PLA)—BioComp BF 7210 and low density polyethylene, trade name Malen E FABS 23-D022; as a petrochemical reference sample. Using the blown film extrusion method and various screw rotational speeds, films were obtained and tested, as a result of which the following were determined: breaking stress, strain at break, static and dynamic friction coefficient of film in longitudinal and transverse direction, puncture resistance and strain at break, color, brightness and gloss of film, surface roughness, barrier properties and microstructure. The biodegradable plastics tested are characterized by comparable or even better mechanical strength than petrochemical polyethylene for the range of film blowing processing parameters used here. The effect of the screw rotational speed on the mechanical characteristics of the films obtained was also demonstrated. With the increase in the screw rotational speed, the decrease of barrier properties was also observed. No correlation between roughness and permeability of gases and water vapor was shown. It was indicated that biodegradable plastics might be competitive for conventional petrochemical materials used in film blowing niche applications where cost, recyclability, optical and water vapor barrier properties are not critical.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bedriye Ucpinar Durmaz ◽  
Ayse Aytac

Abstract Bio-based films containing poly (vinyl alcohol)/casein have poor mechanical and water vapor barrier properties that limit their use in packaging application. Some properties such as water resistance and tensile strength can be increased by the cross-linking process. For this reason, poly(vinyl alcohol)/sodium caseinate (PVA/SC) blends were crosslinked by adding glutaraldehyde (GLA) and glyoxal (GL) at different ratios in this work. The films were prepared by solution casting technique. Fourier transform infrared analysis (FTIR) confirmed the crosslinking reaction between the components. As a result of the crosslinking, the thicknesses, water vapor barrier properties and water contact angle values of the films have increased. The total soluble matters (TSM) of PVA/SC film decreased with increasing amounts of crosslinkers and GLA crosslinked films exhibited lower TSM. The addition of GLA and GL resulted in more strengthened films as verified by the tensile test. On the other hand, GLA crosslinked films were more flexible than un-crosslinked and GL crosslinked PVA/SC films. The hydrophilic PVA/SC film became more hydrophobic with the increasing amounts of crosslinkers. With the crosslinking, the PVA/SC film became more thermally stable. In conclusion, the crosslinked PVA/SC films were obtained with suitable properties for packaging applications.


2014 ◽  
Vol 119 (2) ◽  
pp. 584-593 ◽  
Author(s):  
Marion Benetti ◽  
Gilles Reverdin ◽  
Catherine Pierre ◽  
Liliane Merlivat ◽  
Camille Risi ◽  
...  

2011 ◽  
Vol 295-297 ◽  
pp. 1206-1210
Author(s):  
Yan Feng Guo ◽  
Xian Ping Ma ◽  
Yu Yan ◽  
Yun Gang Fu

The main feature of this article is the investigation on the influence of temperature, relative humidity, film thickness on permeability of PET packaging film, the analysis of perm-selectivity of the packaging films for oxygen gas and carbon dioxide gas, and the evaluation on experimental formulas of water vapor, O2 and CO2 gas permeating rates on the basis of gas molecular osmotic reaction kinetics and regression analysis. The comparison between experimental studies and calculation indicates that: (1) with increment of ambient temperature water vapor, O2 and CO2 permeating rate of PET films and PET/Al film also rise, and the logarithm of water vapor, O2 and CO2 gas permeating rates has linear relation with the reciprocal of thermodynamic temperature, and (2) the influence of relative humidity on water vapor permeating rate of PET film with thickness 12µm is the least, and that of PET film with thickness 20µm and PET/Al film with thickness 18µm is a little obvious. (3) The PET films hold remarkable perm-selectivity for O2 and CO2 gas, and CO2 gas permeating rate is about two times of O2 gas, yet O2 and CO2 gas permeating rates of PET/Al film are both very low and have small difference, so the PET/Al film has better barrier performance than the PET film.


RSC Advances ◽  
2018 ◽  
Vol 8 (38) ◽  
pp. 21651-21657 ◽  
Author(s):  
Jiajie Wang ◽  
Ting Pan ◽  
Jian Zhang ◽  
Xiaozhi Xu ◽  
Qing Yin ◽  
...  

A hydrophobic film is fabricated by spin-coating of Tween 80 modified layered double hydroxide and polydimethylsiloxane alternately, which displays enhanced oxygen/water vapor barrier properties and anti-corrosion behavior toward metal substrates.


Sign in / Sign up

Export Citation Format

Share Document