scholarly journals Soil horizon variation: A review

2020 ◽  
pp. 125-185 ◽  
Author(s):  
A.E. Hartemink ◽  
Y. Zhang ◽  
J.G. Bockheim ◽  
N. Curi ◽  
S.H.G. Silva ◽  
...  
Keyword(s):  
2015 ◽  
Vol 2 (2) ◽  
pp. 148-158
Author(s):  
Surianto

Spodosol soil of Typic Placorthod sub-group of East Barito District is one of the problem soils with the presence of hardpan layer, low fertility, low water holding capacity, acid reaction and it is not suitable for oil palm cultivation without any properly specific management of land preparation and implemented best agronomic practices. A study was carried out to evaluate the soil characteristic of a big hole (A profile) and no big hole (B profile) system and comparative oil palm productivity among two planting systems. This study was conducted in Spodosol soil at oil palm plantation (coordinate X = 0281843 and Y = 9764116), East Barito District, Central Kalimantan Province on February 2014, by surveying of placic and ortstein depth and observing soil texture and chemical properties of 2 (two) oil palm's soil profiles that have been planted in five years. Big hole system of commercial oil palm field planting on the Spodosol soil area was designed for the specific purpose of minimizing the potential of a negative effect of shallow effective planting depth for oil palms growing due to the hardpan layer (placic and ortstein) presence as deep as 0.25 - 0.50 m. The big hole system is a planting hole type which was vertical-sided with 2.00 m x 1.50 m on top and bottom side and 3.00 m depth meanwhile the 2:1 drain was vertical-sided also with 1.50 m depth and 300 m length. Oil palm production was recorded from the year 2012 up to 2014. Results indicated that the fractions both big hole profile (A profile) and no big hole profile (B profile) were dominated by sands ranged from 60% to 92% and the highest sands content of non-big hole soil profile were found in A and E horizons (92%). Better distribution of sand and clay fractions content in between layers of big hole soil profiles of A profile sample is more uniform compared to the B profile sample. The mechanical holing and material mixing of soil materials of A soil profile among the upper and lower horizons i.e. A, E, B and C horizons before planting that resulted a better distribution of both soil texture (sands and clay) and chemical properties such as acidity value (pH), C-organic, N, C/N ratio, CEC, P-available and Exchangeable Bases. Investigation showed that exchangeable cations (Ca, Mg, K), were very low in soil layers (A profile) and horizons (B profile) investigated. The low exchangeable cations due to highly leached of bases to the lower layers and horizons. Besides, the palm which was planted on the big hole system showed good adaptation and response positively by growing well of tertiary and quaternary roots that the roots were penetrable into deeper rooting zone as much as >1.00 m depth. The roots can grow well and penetrate much deeper in A profile compared to the undisturbed hardpan layer (B profile). The FFB (fresh fruit bunches) production of the non-big hole block was higher than the big hole block for the first three years of production. This might be due to the high variation of monthly rainfall in-between years of observation from 2009 to 2014. Therefore, the hardness of placic and ortstein as unpenetrable agents by roots and water to prevent water loss and retain the water in the rhizosphere especially in the drier weather. In the high rainfall condition, the 2:1 drain to prevent water saturation in the oil palm rhizosphere by moving some water into the drain. Meanwhile, the disturbed soil horizon (big hole area) was drier than un disturbance immediately due to water removal to deeper layers. We concluded that both big hole and 2:1 drain are a suitable technology for Spodosol soil land especially in preparing palms planting to minimize the negative effect of the hardpan layer for oil palm growth.


1984 ◽  
Vol 13 (2) ◽  
pp. 247-251 ◽  
Author(s):  
W. N. Beyer ◽  
G. W. Miller ◽  
E. J. Cromartie
Keyword(s):  

2020 ◽  
Vol 17 (2) ◽  
pp. 281-304 ◽  
Author(s):  
Sophie Casetou-Gustafson ◽  
Harald Grip ◽  
Stephen Hillier ◽  
Sune Linder ◽  
Bengt A. Olsson ◽  
...  

Abstract. Reliable and accurate methods for estimating soil mineral weathering rates are required tools in evaluating the sustainability of increased harvesting of forest biomass and assessments of critical loads of acidity. A variety of methods that differ in concept, temporal and spatial scale, and data requirements are available for measuring weathering rates. In this study, causes of discrepancies in weathering rates between methods were analysed and were classified as being either conceptual (inevitable) or random. The release rates of base cations (BCs; Ca, Mg, K, Na) by weathering were estimated in podzolised glacial tills at two experimental forest sites, Asa and Flakaliden, in southern and northern Sweden, respectively. Three different methods were used: (i) historical weathering since deglaciation estimated by the depletion method, using Zr as the assumed inert reference; (ii) steady-state weathering rate estimated with the PROFILE model, based on quantitative analysis of soil mineralogy; and (iii) BC budget at stand scale, using measured deposition, leaching and changes in base cation stocks in biomass and soil over a period of 12 years. In the 0–50 cm soil horizon historical weathering of BCs was 10.6 and 34.1 mmolc m−2 yr−1, at Asa and Flakaliden, respectively. Corresponding values of PROFILE weathering rates were 37.1 and 42.7 mmolc m−2 yr−1. The PROFILE results indicated that steady-state weathering rate increased with soil depth as a function of exposed mineral surface area, reaching a maximum rate at 80 cm (Asa) and 60 cm (Flakaliden). In contrast, the depletion method indicated that the largest postglacial losses were in upper soil horizons, particularly at Flakaliden. With the exception of Mg and Ca in shallow soil horizons, PROFILE produced higher weathering rates than the depletion method, particularly of K and Na in deeper soil horizons. The lower weathering rates of the depletion method were partly explained by natural and anthropogenic variability in Zr gradients. The base cation budget approach produced significantly higher weathering rates of BCs, 134.6 mmolc m−2 yr−1 at Asa and 73.2 mmolc m−2 yr−1 at Flakaliden, due to high rates estimated for the nutrient elements Ca, Mg and K, whereas weathering rates were lower and similar to those for the depletion method (6.6 and 2.2 mmolc m−2 yr−1 at Asa and Flakaliden). The large discrepancy in weathering rates for Ca, Mg and K between the base cation budget approach and the other methods suggests additional sources for tree uptake in the soil not captured by measurements.


2005 ◽  
Vol 35 (9) ◽  
pp. 2178-2187 ◽  
Author(s):  
J C Neff ◽  
J W Harden ◽  
G Gleixner

Boreal ecosystems contain a substantial fraction of the earth's soil carbon stores and are prone to frequent and severe wildfires. In this study, we examine changes in element and organic matter stocks due to a 1999 wildfire in Alaska. One year after the wildfire, burned soils contained between 1071 and 1420 g/m2 less carbon than unburned soils. Burned soils had lower nitrogen than unburned soils, higher calcium, and nearly unchanged potassium, magnesium, and phosphorus stocks. Burned surface soils tended to have higher concentrations of noncombustible elements such as calcium, potassium, magnesium, and phosphorus compared with unburned soils. Combustion losses of carbon were mostly limited to surface dead moss and fibric horizons, with no change in the underlying mineral horizons. Burning caused significant changes in soil organic matter structure, with a 12% higher ratio of carbon to combustible organic matter in surface burned horizons compared with unburned horizons. Pyrolysis gas chromatography – mass spectroscopy also shows preferential volatilization of polysaccharide-derived organic matter and enrichment of lignin- and lipid-derived compounds in surface soils. The chemistry of deeper soil layers in burned and unburned sites was similar, suggesting that immediate fire impacts were restricted to the surface soil horizon.


1930 ◽  
Vol B11 (2001) ◽  
pp. 72-73
Author(s):  
F. A. Hayes ◽  
M. H. Lapham ◽  
A. H. Joel ◽  
G. B. Bodman ◽  
E. A. Norton
Keyword(s):  

Author(s):  
M.J. Casabella-González ◽  
L. Borselli ◽  
J.V. García-Meza
Keyword(s):  

2021 ◽  
Author(s):  
Pertti Sarala ◽  
Solveig Pospiech ◽  
Maarit Middleton ◽  
Anne Taivalkoski ◽  
Helena Hulkki ◽  
...  

<p>Vulnerable nature in northernmost Europe requires development of new, environmentally friendly sampling and analyses techniques for mineral exploration. Those areas are typically covered by transported glaciogenic sediments where the glacial till is most dominant. To offer an alternative for conventional basal till and bedrock sampling with heavy machines, the use of different surface geochemical sampling media and techniques which are quick and cost-effective have been actively applied during the last decade. Particularly, the development of selective and weak leach techniques for the upper soil (Ah and B) horizons’ geochemistry has been intensive, but the reliability needs to be improved and testing is required in different glaciogenic environments.</p><p>In this research, carried out under the project New Exploration Technologies (NEXT), funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 776804, we used stratified random sampling strategy for choosing sampling locations and developed novel compositional statistical data analysis for the interpretation of geochemical data obtained by surface geochemical techniques. The test area is located in the Rajapalot area, Ylitornio, northern Finland, where an active project is carried out by Mawson Oy for Au-Co exploration. The thickness of till cover varies from some metres to 5 m and the glacial morphology is composed of the ribbed moraine ridges with peatlands in between. A sampling network for the Ah and B horizon samples was comprised of 89 routine samples and 10 field replicates acquired of mineral Podsol-type soils. The chemical analyses methods used were Ultratrace 1:1:1 Aqua Regia leach and 0.1 M sodium pyrophosphate leach for the Ah horizon samples, and Ionic leach and Super Trace Aqua Regia leach methods for the B horizon samples. The laboratory analyses were supported by the portable X-Ray Fluorescence (pXRF) analyses done directly in the field. The statistical analysis was based on log-ratio transformations of the geochemical compositions to avoid spurious results. In addition, the response ratios were calculated to measure the degree of enrichment in each element per sample.</p><p>The preliminary results of the soil geochemistry show a significant response to many elements (e.g. Au, Co, Cu, Mo, Sc, Te and W) with known mineralized bedrock targets observed in the drill core data. Elemental distribution is also reflecting the lithological variations of the rock units in the bedrock. Based on the results, it is obvious that a) there is good or moderate correlation for several elements between the surface geochemical data and underlying bedrock, and b) soil analysis method using certain soil sampling procedure and selective extraction is an effective, environmentally friendly geochemical exploration technique in the glaciated terrains.</p>


1971 ◽  
Vol 51 (3) ◽  
pp. 449-459 ◽  
Author(s):  
A. J. MacLEAN ◽  
J. E. BRYDON

Soil clays of 11 horizon samples of Canadian soils gave activity ratios (AReK) of 0.0003 to 0.0040, exchangeable K values of 0.18 to 1.74 meq/100 g, nonexchangeable K values of 1.54 to 6.65 meq/100 g upon leaching with 12 liters of 0.1 N BaCl2 and of 0.45 to 4.03 meq as measured by plant removal, and degrees of K-fixation of 29 to 100% of added K against extraction with 1 N NH4OAc. The amounts of exchangeable K were correlated with the activity ratios and with the amounts of non-exchangeable K removed by plants. Of the fixed K, 46 to 86% was recovered by leaching with the 0.1 N BaCl2 and 18 to 64% by cropping. Some of the clays gave a satisfactory relationship between their K behaviour and mineralogy. Two of them (Ae, Humo-Ferric Podzol), consisting of mixtures of vermiculite and montmorillonite, released native K slowly and had a high capacity to fix added K. Another corresponding sample, from the C horizon and consisting of well-ordered 2 M1 muscovite, also released native K slowly but gave the lowest degree of K-fixation. A predominantly montmorillonite clay with some mica layers (Gray Luvisol) gave a high release of native K and fixed an intermediate amount of added K. The K–mineralogy relationship in the remaining samples was less apparent, and varied with the complexity of interstratification.


2021 ◽  
Vol 9 (9) ◽  
pp. 1943
Author(s):  
Milan Varsadiya ◽  
Tim Urich ◽  
Gustaf Hugelius ◽  
Jiří Bárta

Permafrost-affected soil stores a significant amount of organic carbon. Identifying the biological constraints of soil organic matter transformation, e.g., the interaction of major soil microbial soil organic matter decomposers, is crucial for predicting carbon vulnerability in permafrost-affected soil. Fungi are important players in the decomposition of soil organic matter and often interact in various mutualistic relationships during this process. We investigated four different soil horizon types (including specific horizons of cryoturbated soil organic matter (cryoOM)) across different types of permafrost-affected soil in the Western Canadian Arctic, determined the composition of fungal communities by sequencing (Illumina MPS) the fungal internal transcribed spacer region, assigned fungal lifestyles, and by determining the co-occurrence of fungal network properties, identified the topological role of keystone fungal taxa. Compositional analysis revealed a significantly higher relative proportion of the litter saprotroph Lachnum and root-associated saprotroph Phialocephala in the topsoil and the ectomycorrhizal close-contact exploring Russula in cryoOM, whereas Sites 1 and 2 had a significantly higher mean proportion of plant pathogens and lichenized trophic modes. Co-occurrence network analysis revealed the lowest modularity and average path length, and highest clustering coefficient in cryoOM, which suggested a lower network resistance to environmental perturbation. Zi-Pi plot analysis suggested that some keystone taxa changed their role from generalist to specialist, depending on the specific horizon concerned, Cladophialophora in topsoil, saprotrophic Mortierella in cryoOM, and Penicillium in subsoil were classified as generalists for the respective horizons but specialists elsewhere. The litter saprotrophic taxon Cadophora finlandica played a role as a generalist in Site 1 and specialist in the rest of the sites. Overall, these results suggested that fungal communities within cryoOM were more susceptible to environmental change and some taxa may shift their role, which may lead to changes in carbon storage in permafrost-affected soil.


Sign in / Sign up

Export Citation Format

Share Document