Thermomechanical Processing of High-Strength Low-Alloy Steels

1988 ◽  
2021 ◽  
Vol 2070 (1) ◽  
pp. 012174
Author(s):  
N B Garg ◽  
A Garg

Abstract Extensive efforts made over the past few decades have enhanced the rising performance of High-Strength Low-Alloy steels. Use of thermomechanical processing was considered for this research. However, the desired mechanical properties are obtained by formulating alloys. Further, to enhance mechanical properties, impact energy, the subsequent quenching and tempering are used. The metallurgical transformation caused by deformation followed by cooling and/or heat treatment has added influences on steels’ mechanical properties. The rational decrease in impact energy value is complex.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Alloy Digest ◽  
1979 ◽  
Vol 28 (2) ◽  

Abstract UNIFLUX V90 is a continuous flux-cored welding electrode (wire) developed to weld high-strength low-alloy steels, but it may be used to weld other low-alloy steels and carbon steels. It is used to deposit typically 2.40% nickel steel weld metal with good low-temperature impact properties. Welding is protected by a shielding atmosphere of either 75% argon-25% carbon dioxide or 100% carbon dioxide. Uniflux V90 is used widely in shipbuilding and other fabricating industries. It provides around 88,000 psi tensile strength and around 26 food-pounds Charpy V-notch impact at 60 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-355. Producer or source: Unicore Inc., United Nuclear Corporation.


Alloy Digest ◽  
1983 ◽  
Vol 32 (8) ◽  

Abstract TRI-MARK TM-115 is a gas-shielded flux-cored welding electrode for continuous high deposition are welding. It is designed specifically for semiautomatic and automatic arc welding of high-strength low-alloy steels and quenched-and-tempered steels. This gas-sheilded tubular wire can be used for single and multiple-pass welding. It has outstanding low-temperature impact properties. Its applications including mining equipment, large vehicles and similar items. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-392. Producer or source: Tri-Mark Inc..


Alloy Digest ◽  
1983 ◽  
Vol 32 (4) ◽  

Abstract TRI-MARK TM-811N2 is a flux-cored welding electrode for all position semiautomatic arc welding. It is designed to weld 2-3% nickel steels for applications requiring good toughness at subzero temperatures; in addition, it is used to weld various other high-strength low-alloy steels and various fine-grained steels with low-temperature toughness. Tri-Mark TM-811N2 is used to deposit typically 2.35% nickel steel weld metal with good low-temperature impact properties. It is used for shipbuilding, oil rigs and similar structures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-389. Producer or source: Tri-Mark Inc..


Author(s):  
O. V. Sych

On the basis of the conducted research, a complex of scientific and technological methods has been developed for various technological processes (thermomechanical processing with accelerated cooling, quenching from rolling and separate furnace heating with high-temperature tempering). The developed method provides the formation of the structure of acceptable heterogeneity and anisotropy according to different morphological and crystallographic parameters throughout the thickness of rolled products up to 100 mm from low alloy steels with a yield strength of at least 315–460 MPa and up to 60 mm from economically alloyed steels with a yield strength of at least 500–750 MPa. The paper presents results of the industrial implementation of hot plastic deformation and heat treatment schemes for the production of cold rolled steel sheet with yield strength of at least 315–750 MPa for the Arctic. The structure of sheet metal thickness is given, providing guaranteed characteristics of strength, ductility, cold resistance, weldability and crack resistance.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1000
Author(s):  
Ricardo Branco ◽  
Filippo Berto

Modern industry, driven by the recent environmental policies, faces an urgent need for the production of lighter and more environmentally friendly components [...]


Sign in / Sign up

Export Citation Format

Share Document