scholarly journals Atomistic simulation of the generation of vacancies in rapid crystallization of metals

2021 ◽  
Vol 203 ◽  
pp. 116465
Author(s):  
Miao He ◽  
Eaman T. Karim ◽  
Maxim V. Shugaev ◽  
Leonid V. Zhigilei
2003 ◽  
Vol 775 ◽  
Author(s):  
Byeongchan Lee ◽  
Kyeongjae Cho

AbstractWe investigate the surface kinetics of Pt using the extended embedded-atom method, an extension of the embedded-atom method with additional degrees of freedom to include the nonbulk data from lower-coordinated systems as well as the bulk properties. The surface energies of the clean Pt (111) and Pt (100) surfaces are found to be 0.13 eV and 0.147 eV respectively, in excellent agreement with experiment. The Pt on Pt (111) adatom diffusion barrier is found to be 0.38 eV and predicted to be strongly strain-dependent, indicating that, in the compressive domain, adatoms are unstable and the diffusion barrier is lower; the nucleation occurs in the tensile domain. In addition, the dissociation barrier from the dimer configuration is found to be 0.82 eV. Therefore, we expect that atoms, once coalesced, are unlikely to dissociate into single adatoms. This essentially tells that by changing the applied strain, we can control the patterning of nanostructures on the metal surface.


Author(s):  
Van-Trang Nguyen ◽  
Minh-Quy Le

We study through molecular dynamics finite element method with Stillinger-Weber potential the uniaxial compression of (0, 24) armchair and (31, 0) zigzag black phosphorene nanotubes with approximately equal diameters. Young's modulus, critical stress and critical strain are estimated with various tube lengths. It is found that under uniaxial compression the (0, 24) armchair black phosphorene nanotube buckles, whereas the failure of the (31, 0) zigzag one is caused by local bond breaking near the boundary.


2019 ◽  
Author(s):  
Ajay Gautam ◽  
Marcel Sadowski ◽  
Nils Prinz ◽  
Henrik Eickhoff ◽  
Nicolo Minafra ◽  
...  

<p>Lithium argyrodite superionic conductors are currently being investigated as solid electrolytes for all-solid-state batteries. Recently, in the lithium argyrodite Li<sub>6</sub>PS<sub>5</sub>X (X = Cl, Br, I), a site-disorder between the anionsS<sup>2–</sup>and X<sup>–</sup>has been observed, which strongly affects the ionic transport and appears to be a function of the halide present. In this work, we show how such disorder in Li<sub>6</sub>PS<sub>5</sub>Br can be engineered <i>via</i>the synthesis method. By comparing fast cooling (<i>i.e. </i>quenching) to more slowly cooled samples, we find that anion site-disorder is higher at elevated temperatures, and that fast cooling can be used to kinetically trap the desired disorder, leading to higher ionic conductivities as shown by impedance spectroscopy in combination with <i>ab-initio</i>molecular dynamics. Furthermore, we observe that after milling, a crystalline lithium argyrodite can be obtained within one minute of heat treatment. This rapid crystallization highlights the reactive nature of mechanical milling and shows that long reaction times with high energy consumption are not needed in this class of materials. The fact that site-disorder induced <i>via</i>quenching is beneficial for ionic transport provides an additional approach for the optimization and design of lithium superionic conductors.</p>


2016 ◽  
Vol 8 (1) ◽  
pp. 01028-1-01028-8 ◽  
Author(s):  
A. V. Khomenko ◽  
◽  
D. V. Boyko ◽  
M. V. Zakharov ◽  
K. P. Khomenko ◽  
...  

Author(s):  
Xing Luo ◽  
Zhibo Zhang ◽  
Yongnan Xiong ◽  
Yao Shu ◽  
Jiazhen He ◽  
...  
Keyword(s):  

2008 ◽  
Vol 44 (2) ◽  
pp. 702-706 ◽  
Author(s):  
Hui-Jun Tian ◽  
Ping Qian ◽  
Jiang Shen ◽  
Nan-Xian Chen

2021 ◽  
Vol 495 ◽  
pp. 229424
Author(s):  
Xubin Chen ◽  
Jordi Sastre ◽  
Matthias Rumpel ◽  
Andreas Flegler ◽  
Anurag Singhania ◽  
...  

Calphad ◽  
2021 ◽  
Vol 74 ◽  
pp. 102317
Author(s):  
Won-Mi Choi ◽  
Jin-Soo Kim ◽  
Won-Seok Ko ◽  
Dong Geun Kim ◽  
Yong Hee Jo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document