A novel medium-Mn steel with superior mechanical properties and marginal oxidization after press hardening

2021 ◽  
Vol 205 ◽  
pp. 116567
Author(s):  
Shuoshuo Li ◽  
Pengyu Wen ◽  
Shilei Li ◽  
Wenwen Song ◽  
Yandong Wang ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2233
Author(s):  
Shaobin Bai ◽  
Wentao Xiao ◽  
Weiqiang Niu ◽  
Dazhao Li ◽  
Wei Liang

Steel designs with superior mechanical properties have been urgently needed in automotive industries to achieve energy conservation, increase safety, and decrease weight. In this study, the aging process is employed to enhance the yield strength (YS) by tailoring the distribution of V-rich precipitates and to improve ductility by producing high volume fractions of recrystallized ferrite in cold-rolled medium-Mn steel. A reliable method to acquire ultra-high strength (1.0–1.5 GPa), together with ductility (>40%), is proposed via utilizing non-recrystallized austenite and recrystallized ferrite. Similarly to conventional medium-Mn steels, the TRIP effect, along with the mild TWIP effect, is responsible for the main deformation mechanisms during tensile testing. However, the coupled influence of precipitation strengthening, grain refinement strengthening, and dislocation strengthening contributes to an increase in YS. The studied steel, aged at 650 °C for 5 h, demonstrates a YS of 1078 MPa, ultimate tensile strength (UTS) of 1438 MPa, and tensile elongation (TE) of 30%. The studied steel aged at 650 °C for 10 h shows a UTS of 1306 MPa and TE of 42%, resulting in the best product in terms of of UTS and TE, at 55 GPa·%. Such a value surpasses that of the previously reported medium-Mn steels containing equal mass fractions of various microalloying elements.


2021 ◽  
Vol 825 ◽  
pp. 141926
Author(s):  
Chao Wang ◽  
Liming Yu ◽  
Ran Ding ◽  
Yongchang Liu ◽  
Huijun Li ◽  
...  

2013 ◽  
Vol 583 ◽  
pp. 84-88 ◽  
Author(s):  
R. Zhang ◽  
W.Q. Cao ◽  
Z.J. Peng ◽  
J. Shi ◽  
H. Dong ◽  
...  

2018 ◽  
Vol 733 ◽  
pp. 246-256 ◽  
Author(s):  
G.K. Bansal ◽  
D.A. Madhukar ◽  
A.K. Chandan ◽  
Ashok K. ◽  
G.K. Mandal ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 929 ◽  
Author(s):  
Xiao Shen ◽  
Wenwen Song ◽  
Simon Sevsek ◽  
Yan Ma ◽  
Claas Hüter ◽  
...  

The ultrafine-grained (UFG) duplex microstructure of medium-Mn steel consists of a considerable amount of austenite and ferrite/martensite, achieving an extraordinary balance of mechanical properties and alloying cost. In the present work, two heat treatment routes were performed on a cold-rolled medium-Mn steel Fe-12Mn-3Al-0.05C (wt.%) to achieve comparable mechanical properties with different microstructural morphologies. One heat treatment was merely austenite-reverted-transformation (ART) annealing and the other one was a successive combination of austenitization (AUS) and ART annealing. The distinct responses to hydrogen ingression were characterized and discussed. The UFG martensite colonies produced by the AUS + ART process were found to be detrimental to ductility regardless of the amount of hydrogen, which is likely attributed to the reduced lattice bonding strength according to the H-enhanced decohesion (HEDE) mechanism. With an increase in the hydrogen amount, the mixed microstructure (granular + lamellar) in the ART specimen revealed a clear embrittlement transition with the possible contribution of HEDE and H-enhanced localized plasticity (HELP) mechanisms.


2017 ◽  
Vol 691 ◽  
pp. 51-59 ◽  
Author(s):  
Z.Z. Zhao ◽  
J.H. Liang ◽  
A.M. Zhao ◽  
J.T. Liang ◽  
D. Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document