scholarly journals Efficiently exploiting process-structure-property relationships in material design by multi-information source fusion

2021 ◽  
Vol 206 ◽  
pp. 116619
Author(s):  
Danial Khatamsaz ◽  
Abhilash Molkeri ◽  
Richard Couperthwaite ◽  
Jaylen James ◽  
Raymundo Arróyave ◽  
...  
2013 ◽  
Vol 86 (3) ◽  
pp. 401-422 ◽  
Author(s):  
Kshitij C. Jha ◽  
Mesfin Tsige

ABSTRACT Elastomers have varied applications from adhesives, sealants, encapsulants, and coatings to specialty usage in electronics, aviation, optical, and communications industries due to their high structural stability. In addition, more and more biological applications of elastomeric compounds are gaining ground, particularly in mimetic architecture. Modeling and simulation provide tools by which the interactions leading to various structure–property relationships can be explored at the micro level. An understanding of these processes could cut down on the extensive and expensive trial-and-error experiments as well as provide a benchmark for material design. This review article explores the work done by different groups, especially at the molecular level, to model the properties of both thermoplastic and thermoset elastomers. Each presents its own challenges and solutions: from microphase separation to network building and force field parameterization. The results of these modeling efforts along with the challenges are presented in this review work.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1665 ◽  
Author(s):  
Ali Reza Zanjanijam ◽  
Ian Major ◽  
John G. Lyons ◽  
Ugo Lafont ◽  
Declan M. Devine

Poly (ether ether ketone) (PEEK) is a high-performance engineering thermoplastic polymer with potential for use in a variety of metal replacement applications due to its high strength to weight ratio. This combination of properties makes it an ideal material for use in the production of bespoke replacement parts for out-of-earth manufacturing purposes, in particular on the International Space Station (ISS). Additive manufacturing (AM) may be employed for the production of these parts, as it has enabled new fabrication pathways for articles with complex design considerations. However, AM of PEEK via fused filament fabrication (FFF) encounters significant challenges, mostly stemming from the semi crystalline nature of PEEK and its associated high melting temperature. This makes PEEK highly susceptible to changes in processing conditions which leads to a large reported variation in the literature on the final performance of PEEK. This has limited the adaption of FFF printing of PEEK in space applications where quality assurance and reproducibility are paramount. In recent years, several research studies have examined the effect of printing parameters on the performance of the 3D-printed PEEK parts. The aim of the current review is to provide comprehensive information in relation to the process-structure-property relationships in FFF 3D-printing of PEEK to provide a clear baseline to the research community and assesses its potential for space applications, including out-of-earth manufacturing.


2018 ◽  
Vol 61 (5) ◽  
pp. 521-541 ◽  
Author(s):  
Wentao Yan ◽  
Stephen Lin ◽  
Orion L. Kafka ◽  
Yanping Lian ◽  
Cheng Yu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7895
Author(s):  
Johannes L. Otto ◽  
Ivan Fedotov ◽  
Milena Penyaz ◽  
Thorge Schaum ◽  
Anke Kalenborn ◽  
...  

Alumina-based ceramic hip endoprosthesis heads have excellent tribological properties, such as low wear rates. However, stress peaks can occur at the point of contact with the prosthesis stem, increasing the probability of fracture. This risk should be minimized, especially for younger and active patients. Metal elevations at the stem taper after revision surgery without removal of a well-fixed stem are also known to increase the risk of fracture. A solution that also eliminates the need for an adapter sleeve could be a fixed titanium insert in the ceramic ball head, which would be suitable as a damping element to reduce the occurrence of stress peaks. A viable method for producing such a permanent titanium–ceramic joint is brazing. Therefore, a brazing method was developed for coaxial samples, and two modifications were made to the ceramic surface to braze a joint that could withstand high cyclic loading. This cyclic loading was applied in multiple amplitude tests in a self-developed test setup, followed by fractographic studies. Computed tomography and microstructural analyses—such as energy dispersive X-ray spectroscopy—were also used to characterize the process–structure–property relationships. It was found that the cyclic loading capacity can be significantly increased by modification of the surface structure of the ceramic.


2017 ◽  
Vol 61 (2) ◽  
pp. 291-298 ◽  
Author(s):  
Q. Chu ◽  
W. Y. Li ◽  
X. W. Yang ◽  
J. J. Shen ◽  
Y. B. Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document