Engineering the cellular mechanical microenvironment to regulate stem cell chondrogenesis: Insights from a microgel model

2020 ◽  
Vol 113 ◽  
pp. 393-406
Author(s):  
Qi Feng ◽  
Huichang Gao ◽  
Hongji Wen ◽  
Hanhao Huang ◽  
Qingtao Li ◽  
...  
2018 ◽  
Vol 30 (49) ◽  
pp. 1705911 ◽  
Author(s):  
Yufei Ma ◽  
Min Lin ◽  
Guoyou Huang ◽  
Yuhui Li ◽  
Shuqi Wang ◽  
...  

2020 ◽  
Author(s):  
Tongcheng Qian ◽  
Daniel A. Gil ◽  
Emmanuel Contreras Guzman ◽  
Benjamin D. Gastfriend ◽  
Kelsey E. Tweed ◽  
...  

AbstractEndothelial cells (EC) in vivo are continuously exposed to a mechanical microenvironment from blood flow, and fluidic shear stress plays an important role in EC behavior. New approaches to generate physiologically and pathologically relevant pulsatile flows are needed to understand EC behavior under different shear stress regimes. Here, we demonstrate an adaptable pump (Adapt-Pump) platform for generating pulsatile flows via quantitative imaging of human pluripotent stem cell-derived cardiac spheroids (CS). Pulsatile flows generated from the Adapt-Pump system can recapitulate unique CS contraction characteristics, accurately model responses to clinically relevant drugs, and simulate CS contraction changes in response to fluidic mechanical stimulation. We discovered that ECs differentiated under a long QT syndrome derived pathological pulsatile flow exhibit abnormal EC monolayer organization. This Adapt-Pump platform provides a powerful tool for modeling the cardiovascular system and improving our understanding of EC behavior under different mechanical microenvironments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Céline Labouesse ◽  
Bao Xiu Tan ◽  
Chibeza C. Agley ◽  
Moritz Hofer ◽  
Alexander K. Winkel ◽  
...  

AbstractStudies of mechanical signalling are typically performed by comparing cells cultured on soft and stiff hydrogel-based substrates. However, it is challenging to independently and robustly control both substrate stiffness and extracellular matrix tethering to substrates, making matrix tethering a potentially confounding variable in mechanical signalling investigations. Moreover, unstable matrix tethering can lead to poor cell attachment and weak engagement of cell adhesions. To address this, we developed StemBond hydrogels, a hydrogel in which matrix tethering is robust and can be varied independently of stiffness. We validate StemBond hydrogels by showing that they provide an optimal system for culturing mouse and human pluripotent stem cells. We further show how soft StemBond hydrogels modulate stem cell function, partly through stiffness-sensitive ERK signalling. Our findings underline how substrate mechanics impact mechanosensitive signalling pathways regulating self-renewal and differentiation, indicating that optimising the complete mechanical microenvironment will offer greater control over stem cell fate specification.


2021 ◽  
Vol 8 (7) ◽  
pp. 2002112
Author(s):  
Byeongtaek Oh ◽  
Yu‐Wei Wu ◽  
Vishal Swaminathan ◽  
Vivek Lam ◽  
Jun Ding ◽  
...  

2020 ◽  
Author(s):  
Min Ji Han ◽  
Won Ji Lee ◽  
Joonhyuk Choi ◽  
Yean Ju Hong ◽  
Sang Jun Uhm ◽  
...  

Author(s):  
D.E. Philpott ◽  
W. Sapp ◽  
C. Williams ◽  
J. Stevenson ◽  
S. Black ◽  
...  

Spermatogonial stem-cell survival after irradiation injury has been studied in rodents by histological counts of surviving cells. Many studies, including previous work from our laboratory, show that the spermatogonial population demonstrates a heterogeneous response to irradiation. The spermatogonia increase in radio-sensitivity as differentiation proceeds through the sequence As - Apr - A1 - A2 - A3 - A4 - In - B. The stem (As) cell is the most resistant and the B cell is the most sensitive. The purpose of this work is to investigate the response of spermatogonial cell to low doses (less than 10 0 rads) of helium particle irradiation.


Author(s):  
D. E. Philpott ◽  
W. Sapp ◽  
C. Williams ◽  
Joann Stevenson ◽  
S. Black

The response of spermatogonial cells to X-irradiation is well documented. It has been shown that there is a radiation resistent stem cell (As) which, after irradiation, replenishes the seminiferous epithelium. Most investigations in this area have dealt with radiation dosages of 100R or more. This study was undertaken to observe cellular responses at doses less than 100R of X-irradiation utilizing a system in which the tissue can be used for light and electron microscopy.Brown B6D2F1 mice aged 16 weeks were exposed to X-irradiation (225KeV; 15mA; filter 0.35 Cu; 50-60 R/min). Four mice were irradiated at each dose level between 1 and 100 rads. Testes were removed 3 days post-irradiation, fixed, and embedded. Sections were cut at 2 microns for light microscopy. After staining, surviving spermatogonia were identified and counted in tubule cross sections. The surviving fraction of spermatogonia compared to control, S/S0, was plotted against dose to give the curve shown in Fig. 1.


Author(s):  
Eric Hallberg ◽  
Lina Hansén

The antennal rudiments in lepidopterous insects are present as disks during the larval stage. The tubular double-walled antennal disk is present beneath the larval antenna, and its inner layer gives rise to the adult antenna during the pupal stage. The sensilla develop from a cluster of cells that are derived from one stem cell, which gives rise to both sensory and enveloping cells. During the morphogenesis of the sensillum these cells undergo major transformations, including cell death. In the moth Agrotis segetum the pupal stage lasts about 14 days (temperature, 25°C). The antennae, clearly seen from the exterior, were dissected and fixed according to standard procedures (3 % glutaraldehyde in 0.15 M cacaodylate buffer, followed by 1 % osmiumtetroxide in the same buffer). Pupae from day 1 to day 8, of both sexes were studied.


2000 ◽  
Vol 111 (3) ◽  
pp. 890-897 ◽  
Author(s):  
Timm Schroeder ◽  
Claudia Lange ◽  
John Strehl ◽  
Ursula Just

Sign in / Sign up

Export Citation Format

Share Document