An integrated approach to investigate age-related modifications of morphological, mechanical and structural properties of type I collagen

Author(s):  
Laurence VAN GULICK ◽  
Charles SABY ◽  
Stéphane JAISSON ◽  
Anaïs OKWIEKA ◽  
Philippe GILLERY ◽  
...  
2015 ◽  
Vol 113 (5) ◽  
pp. 1191-1196 ◽  
Author(s):  
Laëtitia Gorisse ◽  
Christine Pietrement ◽  
Vincent Vuiblet ◽  
Christian E. H. Schmelzer ◽  
Martin Köhler ◽  
...  

Aging is a progressive process determined by genetic and acquired factors. Among the latter are the chemical reactions referred to as nonenzymatic posttranslational modifications (NEPTMs), such as glycoxidation, which are responsible for protein molecular aging. Carbamylation is a more recently described NEPTM that is caused by the nonenzymatic binding of isocyanate derived from urea dissociation or myeloperoxidase-mediated catabolism of thiocyanate to free amino groups of proteins. This modification is considered an adverse reaction, because it induces alterations of protein and cell properties. It has been shown that carbamylated proteins increase in plasma and tissues during chronic kidney disease and are associated with deleterious clinical outcomes, but nothing is known to date about tissue protein carbamylation during aging. To address this issue, we evaluated homocitrulline rate, the most characteristic carbamylation-derived product (CDP), over time in skin of mammalian species with different life expectancies. Our results show that carbamylation occurs throughout the whole lifespan and leads to tissue accumulation of carbamylated proteins. Because of their remarkably long half-life, matrix proteins, like type I collagen and elastin, are preferential targets. Interestingly, the accumulation rate of CDPs is inversely correlated with longevity, suggesting the occurrence of still unidentified protective mechanisms. In addition, homocitrulline accumulates more intensely than carboxymethyl-lysine, one of the major advanced glycation end products, suggesting the prominent role of carbamylation over glycoxidation reactions in age-related tissue alterations. Thus, protein carbamylation may be considered a hallmark of aging in mammalian species that may significantly contribute in the structural and functional tissue damages encountered during aging.


2012 ◽  
Vol 56 (4) ◽  
pp. 259-264 ◽  
Author(s):  
Claudia Cardoso Netto ◽  
Vivian Cristine Correia Vieira ◽  
Lizanka Paola Figueiredo Marinheiro ◽  
Sherry Agellon ◽  
Hope Weiler ◽  
...  

OBJECTIVE: To analyze if female Wistar rats at 56 weeks of age are a suitable model to study osteoporosis. MATERIALS AND METHODS: Female rats with 6 and 36 weeks of age (n = 8 per group) were kept over a 20-week period and fed a diet for mature rodents complete in terms of Ca, phosphorous, and vitamin D. Excised femurs were measured for bone mass using dual-energy x-ray absorptiometry, morphometry, and biomechanical properties. The following serum mar-kers of bone metabolism were analyzed: parathyroid hormone (PTH), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor Κappa B ligand (RANKL), C-terminal peptides of type I collagen (CTX-I), total calcium, and alkaline phosphatase (ALP) activity. RESULTS: Rats at 56 weeks of age showed important bone metabolism differences when compared with the younger group, such as, highest diaphysis energy to failure, lowest levels of OC, CTX-I, and ALP, and elevated PTH, even with adequate dietary Ca. CONCLUSION: Rats at 26-week-old rats may be too young to study age-related bone loss, whereas the 56-week-old rats may be good models to represent the early stages of age-related changes in bone metabolism.


2020 ◽  
Vol 6 (5) ◽  
pp. e508
Author(s):  
Man-Hung Eric Tang ◽  
Joseph P.M. Blair ◽  
Cecilie Liv Bager ◽  
Anne-Christine Bay-Jensen ◽  
Kim Henriksen ◽  
...  

ObjectiveDysregulation of type I collagen metabolism has a great impact on human health. We have previously seen that matrix metalloproteinase–degraded type I collagen (C1M) is associated with early death and age-related pathologies. To dissect the biological impact of type I collagen dysregulation, we have performed a genome-wide screening of the genetic factors related to type I collagen turnover.MethodsPatient registry data and genotypes have been collected for a total of 4,981 Danish postmenopausal women. Genome-wide association with serum levels of C1M was assessed and phenotype-genotype association analysis performed.ResultsTwenty-two genome-wide significant variants associated with C1M were identified in the APOE-C1/TOMM40 gene cluster. The APOE-C1/TOMM40 gene cluster is associated with hyperlipidemia and cognitive disorders, and we further found that C1M levels correlated with tau degradation markers and were decreased in women with preclinical cognitive impairment.ConclusionsOur study provides elements for better understanding the role of the collagen metabolism in the onset of cognitive impairment.


1982 ◽  
Vol 10 (2) ◽  
pp. 127-135 ◽  
Author(s):  
M. Cristina Kenney ◽  
David A. Lewis ◽  
Robert J. Atton ◽  
Richard S. Riggins

2020 ◽  
Vol 21 (17) ◽  
pp. 6368
Author(s):  
Anaïs M. J. Møller ◽  
Jean-Marie Delaissé ◽  
Jacob B. Olesen ◽  
Luisa M. Canto ◽  
Silvia R. Rogatto ◽  
...  

It is well established that multinucleation is central for osteoclastic bone resorption. However, our knowledge on the mechanisms regulating how many nuclei an osteoclast will have is limited. The objective of this study was to investigate donor-related variations in the fusion potential of in vitro-generated osteoclasts. Therefore, CD14+ monocytes were isolated from 49 healthy female donors. Donor demographics were compared to the in vivo bone biomarker levels and their monocytes’ ability to differentiate into osteoclasts, showing that: (1) C-terminal telopeptide of type I collagen (CTX) and procollagen type I N-terminal propeptide (PINP) levels increase with age, (2) the number of nuclei per osteoclast in vitro increases with age, and (3) there is a positive correlation between the number of nuclei per osteoclast in vitro and CTX levels in vivo. Furthermore, the expression levels of the gene encoding dendritic cell-specific transmembrane protein (DCSTAMP) of osteoclasts in vitro correlated positively with the number of nuclei per osteoclast, CTX levels in vivo, and donor age. Our results furthermore suggest that these changes in gene expression may be mediated through age-related changes in DNA methylation levels. We conclude that both intrinsic factors and age-induced increase in fusion potential of osteoclasts could be contributing factors for the enhanced bone resorption in vivo, possibly caused by increased expression levels of DCSTAMP.


1998 ◽  
Vol 14 (1) ◽  
pp. 13-16 ◽  
Author(s):  
Christopher M. DeBacker ◽  
Allen M. Putterman ◽  
LiLi Zhou ◽  
David E. E. Hoick ◽  
Jonathan J. Dutton

Sign in / Sign up

Export Citation Format

Share Document