Microstructure and corrosion properties of sensitized laser powder bed fusion printed Inconel 718 to dissolve support structures in a self-terminating manner

2019 ◽  
Vol 27 ◽  
pp. 526-532
Author(s):  
Christopher S. Lefky ◽  
Thomas G. Gallmeyer ◽  
Senthamilaruvi Moorthy ◽  
Aaron Stebner ◽  
Owen J. Hildreth
Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 944
Author(s):  
Martin Otto ◽  
Stefan Pilz ◽  
Annett Gebert ◽  
Uta Kühn ◽  
Julia Hufenbach

In the last decade, additive manufacturing technologies like laser powder bed fusion (LPBF) have emerged strongly. However, the process characteristics involving layer-wise build-up of the part and the occurring high, directional thermal gradient result in significant changes of the microstructure and the related properties compared to traditionally fabricated materials. This study presents the influence of the build direction (BD) on the microstructure and resulting properties of a novel austenitic Fe‑30Mn‑1C‑0.02S alloy processed via LPBF. The fabricated samples display a {011} texture in BD which was detected by electron backscatter diffraction. Furthermore, isolated binding defects could be observed between the layers. Quasi-static tensile and compression tests displayed that the yield, ultimate tensile as well as the compressive yield strength are significantly higher for samples which were built with their longitudinal axis perpendicular to BD compared to their parallel counterparts. This was predominantly ascribed to the less severe effects of the sharp-edged binding defects loaded perpendicular to BD. Additionally, a change of the Young’s modulus in dependence of BD could be demonstrated, which is explained by the respective texture. Potentiodynamic polarization tests conducted in a simulated body fluid revealed only slight differences of the corrosion properties in dependence of the build design.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1046
Author(s):  
Balachander Gnanasekaran ◽  
Jie Song ◽  
Vijay Vasudevan ◽  
Yao Fu

Laser powder bed fusion (LPBF) has been increasingly used in the fabrication of dense metallic structures. However, the corrosion related properties of LPBF alloys, in particular environment-assisted cracking, such as corrosion fatigue properties, are not well understood. In this study, the corrosion and corrosion fatigue characteristics of LPBF 316L stainless steels (SS) in 3.5 wt.% NaCl solution have been investigated using an electrochemical method, high cycle fatigue, and fatigue crack propagation testing. The LPBF 316L SSs demonstrated significantly improved corrosion properties compared to conventionally manufactured 316L, as reflected by the increased pitting and repassivation potentials, as well as retarded crack initiation. However, the printing parameters did not strongly affect the pitting potentials. LPBF samples also demonstrated enhanced capabilities of repassivation during the fatigue crack propagation. The unique microstructural features introduced during the printing process are discussed. The improved corrosion and corrosion fatigue properties are attributed to the presence of columnar/cellular subgrains formed by dislocation networks that serve as high diffusion paths to transport anti-corrosion elements.


2021 ◽  
pp. 109858
Author(s):  
Galina Kasperovich ◽  
Ralf Becker ◽  
Katia Artzt ◽  
Pere Barriobero-Vila ◽  
Guillermo Requena ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 144
Author(s):  
Eslam M. Fayed ◽  
Mohammad Saadati ◽  
Davood Shahriari ◽  
Vladimir Brailovski ◽  
Mohammad Jahazi ◽  
...  

In the present study, multi-objective optimization is employed to develop the optimum heat treatments that can achieve both high-mechanical performance and non-distinctive crystallographic texture of 3D printed Inconel 718 (IN718) fabricated by laser powder bed fusion (LPBF). Heat treatments including homogenization at different soaking times (2, 2.5, 3, 3.5 and 4 h) at 1080 °C, followed by a 1 h solution treatment at 980 °C and the standard aging have been employed. 2.5 h is found to be the homogenization treatment threshold after which there is a depletion of hardening precipitate constituents (Nb and Ti) from the γ-matrix. However, a significant number of columnar grains with a high fraction (37.8%) of low-angle grain boundaries (LAGBs) have still been retained after the 2.5 h homogenization treatment. After a 4 h homogenization treatment, a fully recrystallized IN718 with a high fraction of annealing twins (87.1%) is obtained. 2.5 and 4 h homogenization treatments result in tensile properties exceeding those of the wrought IN718 at both RT and 650 °C. However, considering the texture requirements, it is found that the 4 h homogenization treatment offers the optimum treatment, which can be used to produce IN718 components offering a balanced combination of high mechanical properties and adequate microstructural isotropy.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
José M. Zea Pérez ◽  
Jorge Corona-Castuera ◽  
Carlos Poblano-Salas ◽  
John Henao ◽  
Arturo Hernández Hernández

Purpose The purpose of this paper is to study the effects of printing strategies and processing parameters on wall thickness, microhardness and compression strength of Inconel 718 superalloy thin-walled honeycomb lattice structures manufactured by laser powder bed fusion (L-PBF). Design/methodology/approach Two printing contour strategies were applied for producing thin-walled honeycomb lattice structures in which the laser power, contour path, scanning speed and beam offset were systematically modified. The specimens were analyzed by optical microscopy for dimensional accuracy. Vickers hardness and quasi-static uniaxial compression tests were performed on the specimens with the least difference between the design wall thickness and the as built one to evaluate their mechanical properties and compare them with the counterparts obtained by using standard print strategies. Findings The contour printing strategies and process parameters have a significant influence on reducing the fabrication time of thin-walled honeycomb lattice structures (up to 50%) and can lead to improve the manufacturability and dimensional accuracy. Also, an increase in the young modulus up to 0.8 times and improvement in the energy absorption up to 48% with respect to those produced by following a standard strategy was observed. Originality/value This study showed that printing contour strategies can be used for faster fabrication of thin-walled lattice honeycomb structures with similar mechanical properties than those obtained by using a default printing strategy.


Sign in / Sign up

Export Citation Format

Share Document