DIBS: Efficient distributed information brokerage in large-scale sensor networks

2013 ◽  
Vol 11 (3) ◽  
pp. 735-746 ◽  
Author(s):  
Cuong Pham ◽  
Duc A. Tran
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hongli Dong ◽  
Zidong Wang ◽  
Steven X. Ding ◽  
Huijun Gao

In recent years, theoretical and practical research on large-scale networked systems has gained an increasing attention from multiple disciplines including engineering, computer science, and mathematics. Lying in the core part of the area are the distributed estimation and fault detection problems that have recently been attracting growing research interests. In particular, an urgent need has arisen to understand the effects of distributed information structures on filtering and fault detection in sensor networks. In this paper, a bibliographical review is provided on distributed filtering and fault detection problems over sensor networks. The algorithms employed to study the distributed filtering and detection problems are categorised and then discussed. In addition, some recent advances on distributed detection problems for faulty sensors and fault events are also summarized in great detail. Finally, we conclude the paper by outlining future research challenges for distributed filtering and fault detection for sensor networks.


Author(s):  
О. Кravchuk ◽  
V. Symonenkov ◽  
I. Symonenkova ◽  
O. Hryhorev

Today, more than forty countries of the world are engaged in the development of military-purpose robots. A number of unique mobile robots with a wide range of capabilities are already being used by combat and intelligence units of the Armed forces of the developed world countries to conduct battlefield intelligence and support tactical groups. At present, the issue of using the latest information technology in the field of military robotics is thoroughly investigated, and the creation of highly effective information management systems in the land-mobile robotic complexes has acquired a new phase associated with the use of distributed information and sensory systems and consists in the transition from application of separate sensors and devices to the construction of modular information subsystems, which provide the availability of various data sources and complex methods of information processing. The purpose of the article is to investigate the ways to increase the autonomy of the land-mobile robotic complexes using in a non-deterministic conditions of modern combat. Relevance of researches is connected with the necessity of creation of highly effective information and control systems in the perspective robotic means for the needs of Land Forces of Ukraine. The development of the Armed Forces of Ukraine management system based on the criteria adopted by the EU and NATO member states is one of the main directions of increasing the effectiveness of the use of forces (forces), which involves achieving the principles and standards necessary for Ukraine to become a member of the EU and NATO. The inherent features of achieving these criteria will be the transition to a reduction of tasks of the combined-arms units and the large-scale use of high-precision weapons and land remote-controlled robotic devices. According to the views of the leading specialists in the field of robotics, the automation of information subsystems and components of the land-mobile robotic complexes can increase safety, reliability, error-tolerance and the effectiveness of the use of robotic means by standardizing the necessary actions with minimal human intervention, that is, a significant increase in the autonomy of the land-mobile robotic complexes for the needs of Land Forces of Ukraine.


Author(s):  
Abdelhady M. Naguib ◽  
Shahzad Ali

Background: Many applications of Wireless Sensor Networks (WSNs) require awareness of sensor node’s location but not every sensor node can be equipped with a GPS receiver for localization, due to cost and energy constraints especially for large-scale networks. For localization, many algorithms have been proposed to enable a sensor node to be able to determine its location by utilizing a small number of special nodes called anchors that are equipped with GPS receivers. In recent years a promising method that significantly reduces the cost is to replace the set of statically deployed GPS anchors with one mobile anchor node equipped with a GPS unit that moves to cover the entire network. Objectives: This paper proposes a novel static path planning mechanism that enables a single anchor node to follow a predefined static path while periodically broadcasting its current location coordinates to the nearby sensors. This new path type is called SQUARE_SPIRAL and it is specifically designed to reduce the collinearity during localization. Results: Simulation results show that the performance of SQUARE_SPIRAL mechanism is better than other static path planning methods with respect to multiple performance metrics. Conclusion: This work includes an extensive comparative study of the existing static path planning methods then presents a comparison of the proposed mechanism with existing solutions by doing extensive simulations in NS-2.


2009 ◽  
Vol 13 (1) ◽  
pp. 40-43
Author(s):  
Shaoliang Peng ◽  
Guoliang Xing ◽  
Shanshan Li ◽  
Weijia Jia ◽  
Yuxing Peng

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 218
Author(s):  
Ala’ Khalifeh ◽  
Khalid A. Darabkh ◽  
Ahmad M. Khasawneh ◽  
Issa Alqaisieh ◽  
Mohammad Salameh ◽  
...  

The advent of various wireless technologies has paved the way for the realization of new infrastructures and applications for smart cities. Wireless Sensor Networks (WSNs) are one of the most important among these technologies. WSNs are widely used in various applications in our daily lives. Due to their cost effectiveness and rapid deployment, WSNs can be used for securing smart cities by providing remote monitoring and sensing for many critical scenarios including hostile environments, battlefields, or areas subject to natural disasters such as earthquakes, volcano eruptions, and floods or to large-scale accidents such as nuclear plants explosions or chemical plumes. The purpose of this paper is to propose a new framework where WSNs are adopted for remote sensing and monitoring in smart city applications. We propose using Unmanned Aerial Vehicles to act as a data mule to offload the sensor nodes and transfer the monitoring data securely to the remote control center for further analysis and decision making. Furthermore, the paper provides insight about implementation challenges in the realization of the proposed framework. In addition, the paper provides an experimental evaluation of the proposed design in outdoor environments, in the presence of different types of obstacles, common to typical outdoor fields. The experimental evaluation revealed several inconsistencies between the performance metrics advertised in the hardware-specific data-sheets. In particular, we found mismatches between the advertised coverage distance and signal strength with our experimental measurements. Therefore, it is crucial that network designers and developers conduct field tests and device performance assessment before designing and implementing the WSN for application in a real field setting.


Sensors ◽  
2013 ◽  
Vol 13 (12) ◽  
pp. 17241-17264 ◽  
Author(s):  
Federico Domínguez ◽  
Nguyen The Cuong ◽  
Felipe Reinoso ◽  
Abdellah Touhafi ◽  
Kris Steenhaut

Sign in / Sign up

Export Citation Format

Share Document