scholarly journals Effect of non-Newtonian flow due to thermally-dependent properties over an inclined surface in the presence of chemical reaction, Brownian motion and thermophoresis

2021 ◽  
Vol 60 (5) ◽  
pp. 4931-4945
Author(s):  
Shahzad Ahmad ◽  
Anique Ahmad ◽  
Kashif Ali ◽  
Hina Bashir ◽  
Muhammad Farooq Iqbal
2013 ◽  
Vol 136 (1) ◽  
Author(s):  
D. A. Nield ◽  
A. V. Kuznetsov

We analytically studied the onset of convection, induced by internal heating, such as that produced by microwave heating or chemical reaction, in a horizontal layer of a nanofluid subject to Brownian motion and thermophoresis. This is a fundamentally different situation from traditionally studied heating from below. Convection, when it occurs, is now concentrated in the portion of the layer where the upward vertical gradient is negative, which is the upper portion of the layer. The situation of internal heating also allows employing more realistic boundary conditions than those hitherto used.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 926 ◽  
Author(s):  
Khuram Rafique ◽  
Muhammad Imran Anwar ◽  
Masnita Misiran ◽  
Ilyas Khan ◽  
Asiful H. Seikh ◽  
...  

Brownian motion and thermophoresis diffusions are the fundamental ideas of abnormal upgrading in thermal conductivity via binary fluids (base fluid along with nanoparticles). The influence of Brownian motion and thermophoresis are focused on in the Buongiorno model. In this problem, we considered the Buongiorno model with Brownian motion and thermophoretic effects. The nonlinear ordinary differential equations are recovered from the partial differential equations of the boundary flow via compatible similarity transformations and then employed to the Keller-box scheme for numerical results. The physical quantities of our concern including skin friction, Nusselt number, and Sherwood number along with velocity, temperature and concentration profile against involved effects are demonstrated. The impacts of the involved flow parameters are drawn in graphs and tabulated forms. The inclination effect shows an inverse relation with the velocity field. Moreover, the velocity profile increases with the growth of the buoyancy effect.


2020 ◽  
Vol 25 (2) ◽  
pp. 103-121
Author(s):  
Santoshi Misra ◽  
K. Govardhan

AbstractA numerical study on a steady, laminar, boundary layer flow of a nanofluid with the influence of chemical reaction resulting in the heat and mass transfer variation is made. The non-linear governing equations with related boundary conditions are solved using Adam’s predictor corrector method with the effect of a Brownian motion and thermophoresis being incorporated as a model for the nanofluid, using similarity transformations. Validation of the current numerical results has been made in comparison to the existing results in the absence of chemical reaction on MHD flows. The numerical solutions obtained for the velocity, temperature and concentration profiles for the choice of various parameters are represented graphically. Variations of heat and mass transfer across a Brownian motion and thermophoresis are studied and analyzed.


Author(s):  
A Mahdy ◽  
GA Hoshoudy

The present exploration addresses the boundary layer electro-magnetohydrodynamic (EMHD) flow of time-dependant non-Newtonian tangent hyperbolic nanofluid that is electrically conducting past a Riga surface with variable thickness and slip boundary condition. Configuration flow modeling is deduced considering chemical reaction and heat generation/absorption with the impacts of Brownian motion and thermophoresis. Also a newly proposed boundary condition with zero mass flux has been presented in the current contribution. Numerical solution of the governing non-linear differential equations is presented by considering the shooting technique. Graphical illustrations pointing out the aspects of distinct physical parameters on the non-Newtonian nanofluid velocity, temperature and concentration fields are introduced. From the computational results, the concentration distribution gives a decreasing function of the chemical reaction and Brownian motion parameters. Higher values of shape parameter yield a negative influence on the mechanical properties of the surface. The Hartmann number leads to maximize both of velocity field and skin friction coefficient. Additionally, numerical computed values of the skin friction, local Nusselt and Sherwood numbers are depicted with the needful discussion.


Sign in / Sign up

Export Citation Format

Share Document