Landscape simplification decreases wild bee pollination services to strawberry

2015 ◽  
Vol 211 ◽  
pp. 51-56 ◽  
Author(s):  
Heather Connelly ◽  
Katja Poveda ◽  
Gregory Loeb
2018 ◽  
Vol 3 (1) ◽  
pp. 393-403 ◽  
Author(s):  
E. M. Venturini ◽  
F. A. Drummond ◽  
A. K. Hoshide

Abstract Pollination reservoirs are pollen and nectar rich wildflower plantings intended to enhance pollination services in pollinator-dependent crops. Despite government assistance, plantings often fail to establish. Our focal crop, wild blueberries, is a unique cropping-system native to the U.S.A. It is never planted or cultivated, and typically exists in isolated fields within a mostly coniferous forest matrix. Our study takes place in Maine, U.S.A., where growers could economically benefit by switching reliance from rented honey bees to native bee pollination. Lowbush blueberry growers support wild bee enhancement efforts, but the low pH (4.0-5.0) of this agro-ecosystem presents unique challenges to wildflower establishment. We sought to identify methods that Organic certified growers can use to successfully establish pollination reservoirs in this system. We tested the effects of nurse crops and mowing on the success of a custom wildflower mixture over four years. Success was considered in terms of longevity, sown species diversity, above-ground biomass, and the number and weight of inflorescences. The authors present an economic analysis of cost versus projected planting longevity. In the fourth year of establishment, sown plant diversity significantly decreased, Solidago spp. weeds became dominant, and treatments were not a strong determinant of planting success. The economic analysis suggests that the high cost of pollination reservoir establishment may be a barrier to grower adoption. This study provides evidence and economic justification that weeds must be controlled prior to planting and represents one of the first studies to empirically test organic strategies for wildflower establishment in an agricultural context.


2019 ◽  
Vol 113 (2) ◽  
pp. 562-574 ◽  
Author(s):  
C M McGrady ◽  
R Troyer ◽  
S J Fleischer

Abstract Wild bees supply sufficient pollination in Cucurbita agroecosystems in certain settings; however, some growers continue to stock fields with managed pollinators due to uncertainties of temporal and spatial variation on pollination services supplied by wild bees. Here, we evaluate wild bee pollination activity in wholesale, commercial pumpkin fields over 3 yr. We identified 37 species of bees foraging in commercial pumpkin fields. Honey bees (Apis mellifera L. [Hymenoptera: Apidae]), squash bees (Eucera (Peponapis) Say, Dorchin [Hymenoptera: Apidae]), and bumble bees (Bombus spp., primarily B. impatiens Cresson [Hymenoptera: Apidae]) were the most active pollinator taxa, responsible for over 95% of all pollination visits. Preference for female flowers decreased as distance from field edge increased for several bee taxa. Visitation rates from one key pollinator was negatively affected by field size. Visitation rates for multiple taxa exhibited a curvilinear response as the growing season progressed and responded positively to increasing floral density. We synthesized existing literature to estimate minimum ‘pollination thresholds’ per taxa and determined that each of the most active pollinator taxa exceeded these thresholds independently. Under current conditions, renting honey bee hives may be superfluous in this system. These results can aid growers when executing pollination management strategies and further highlights the importance of monitoring and conserving wild pollinator populations.


2017 ◽  
Vol 214 ◽  
pp. 312-319 ◽  
Author(s):  
Tibor Bukovinszky ◽  
Joke Verheijen ◽  
Susan Zwerver ◽  
Esther Klop ◽  
Jacobus C. Biesmeijer ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Panlong Wu ◽  
Piaopiao Dai ◽  
Meina Wang ◽  
Sijie Feng ◽  
Aruhan Olhnuud ◽  
...  

Bees provide key pollination services for a wide range of crops. Accumulating evidence shows the effect of semi-natural habitats at the landscape level and local management practices on bee diversity in fields. However, most of the evidence is derived from studies in North America and Europe. Whether this paradigm is applicable in China, which is characterized by smallholder-dominated agricultural landscapes, has rarely been studied. In this study, we aimed to investigate how bee diversity affected apple production, and how landscape and local variables affected bee diversity and species composition on the Northern China Plain. The results showed that bees significantly increased apple fruit set compared to bagged controls. Wild bee diversity was positively related to apple seed numbers. Higher seed numbers reduced the proportion of deformed apples and thus increased fruit quality. Wild bee abundance was positively correlated with flowering ground cover, and both the abundance and species richness of wild bees were positively affected by the percentage of semi-natural habitats. We conclude that apple quality can benefit from ecological intensification comprising the augmentation of wild bees by semi-natural habitats and flowering ground cover. Future pollination management should therefore reduce the intensification level of management at both the local and landscape scales.


Author(s):  
Veereshkumar ◽  
K. M. Kumaranag ◽  
A. R. Uthappa ◽  
Dibyendu Deb ◽  
Madhulika Srivastava ◽  
...  
Keyword(s):  

Data ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 98 ◽  
Author(s):  
Kathleen A Lewis ◽  
John Tzilivakis

Pollination services are vital for agriculture, food security and biodiversity. Although many insect species provide pollination services, honeybees are thought to be the major provider of this service to agriculture. However, the importance of wild bees in this respect should not be overlooked. Whilst regulatory risk assessment processes have, for a long time, included that for pollinators, using honeybees (Apis mellifera) as a protective surrogate, there are concerns that this approach may not be sufficiently adequate particularly because of global declines in pollinating insects. Consequently, risk assessments are now being expanded to include wild bee species such as bumblebees (Bombus spp.) and solitary bees (Osmia spp.). However, toxicity data for these species is scarce and are absent from the main pesticide reference resources. The aim of the study described here was to collate data relating to the acute toxicity of pesticides to wild bee species (both topical and dietary exposure) from published regulatory documents and peer reviewed literature, and to incorporate this into one of the main online resources for pesticide risk assessment data: The Pesticide Properties Database, thus ensuring that the data is maintained and continuously kept up to date. The outcome of this study is a dataset collated from 316 regulatory and peer reviewed articles that contains 178 records covering 120 different pesticides and their variants which includes 142 records for bumblebees and a further 115 records for other wild bee species.


2019 ◽  
Vol 11 (7) ◽  
pp. 2169 ◽  
Author(s):  
Qin Liu ◽  
Pei Xu ◽  
Kun Yan ◽  
Yingman Guo

Chengdu Plain is one of China’s most important agricultural production zones and has a large human population. Agricultural crops require insect pollination to increase yield and quality, which is especially important in plains areas where forest area is small. Homegardens are the main habitat of pollinators. The present study identified the importance of insect pollination in homegardens in the Chengdu Plain through field investigations and comparative experiments and revealed the risk to pollination services caused by the decrease in diversity and population of managed and wild pollinators. The results showed that (1) prohibiting all insect pollination (treatment A) and prohibiting managed bee pollination (treatment B) significantly reduced the yield and seed number of rapeseed and significantly reduced the size, weight, and sweetness of peach fruit, but had no significant effects on plums; (2) the dependence on insect pollination and the economic values of insect pollination for rapeseed and peaches are 0.56 and $85.1 million and 0.44 and $31.0 million, respectively; (3) there were 23 flower-visiting pollinator species at the experimental sites including: four species of managed bees and 19 species of wild pollinators. The peak time for pollinators to visit flowers was 11:00 to 15:00, and the managed bees accounted for over 67.55% of these visits; (4) within a radius of 1000 m from the site, 58.06% of the bees were non-locally managed, and the bee population managed locally by farmers decreased; and (5) compared with 2008, the number of homegardens decreased by 17.24%, the managed bees within the homegardens decreased by 62.05%, and the disappearance and destruction of homegardens led to a significant reduction in wild pollinators.


2016 ◽  
Vol 221 ◽  
pp. 1-7 ◽  
Author(s):  
Eleanor J. Blitzer ◽  
Jason Gibbs ◽  
Mia G. Park ◽  
Bryan N. Danforth

Sociobiology ◽  
2018 ◽  
Vol 65 (4) ◽  
pp. 583
Author(s):  
Carina A. S. Silva ◽  
Wesley A. C. Godoy ◽  
Cynthia R. O. Jacob ◽  
Gustavo Thomas ◽  
Gil M. S. Câmara ◽  
...  

Sunflower is a pollinator-dependent crop and one of the most cultivated oilseeds in the world, supporting important sectors of the agricultural industry, such as the food supply, because it is an important source of vitamin E and unsaturated fatty acids for human health. Although it is well stablished that bee pollination improves sunflower seed set, it is still unknown if pollinators influence the nutritional composition. Considering the economic importance of sunflowers for several Brazilian agricultural sectors, the aim of this study was to evaluate the effect of the bee community for (1) achene quality (weight and nutritional composition) and (2) market value. Exclusion experiments were performed with hybrid sunflowers and showed that bee pollination enhanced the achene weight by 91 %, the levels of vitamin E by 45 % and unsaturated fatty acids by 0.3 %. Also, it was estimated that due to the pollination services provided by bees, the grower of the sunflower cultivar used in this study nearly duplicates the sale value of the achenes per hectare of cultivated area. Thus, the current study highlights the importance of bees as providers of cross- and self-pollination to nutritional quality of sunflower achenes and provides useful baseline figures to further evaluations of the effects of pollinators on human diets and health.


Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 499
Author(s):  
Rebecca M. Dew ◽  
Quinn S. McFrederick ◽  
Sandra M. Rehan

Bees collect pollen from flowers for their offspring, and by doing so contribute critical pollination services for our crops and ecosystems. Unlike many managed bee species, wild bees are thought to obtain much of their microbiome from the environment. However, we know surprisingly little about what plant species bees visit and the microbes associated with the collected pollen. Here, we addressed the hypothesis that the pollen and microbial components of bee diets would change across the range of the bee, by amplicon sequencing pollen provisions of a widespread small carpenter bee, Ceratina calcarata, across three populations. Ceratina calcarata was found to use a diversity of floral resources across its range, but the bacterial genera associated with pollen provisions were very consistent. Acinetobacter, Erwinia, Lactobacillus, Sodalis, Sphingomonas and Wolbachia were among the top ten bacterial genera across all sites. Ceratina calcarata uses both raspberry (Rubus) and sumac (Rhus) stems as nesting substrates, however nests within these plants showed no preference for host plant pollen. Significant correlations in plant and bacterial co-occurrence differed between sites, indicating that many of the most common bacterial genera have either regional or transitory floral associations. This range-wide study suggests microbes present in brood provisions are conserved within a bee species, rather than mediated by climate or pollen composition. Moving forward, this has important implications for how these core bacteria affect larval health and whether these functions vary across space and diet. These data increase our understanding of how pollinators interact with and adjust to their changing environment.


Sign in / Sign up

Export Citation Format

Share Document