scholarly journals Evapotranspiration assessment of a mixed temperate forest by four methods: Eddy covariance, soil water budget, analytical and model

2016 ◽  
Vol 228-229 ◽  
pp. 191-204 ◽  
Author(s):  
R. Soubie ◽  
B. Heinesch ◽  
A. Granier ◽  
M. Aubinet ◽  
C. Vincke
2001 ◽  
Vol 106 (2) ◽  
pp. 153-168 ◽  
Author(s):  
Kell B Wilson ◽  
Paul J Hanson ◽  
Patrick J Mulholland ◽  
Dennis D Baldocchi ◽  
Stan D Wullschleger

2021 ◽  
Author(s):  
Sinikka Paulus ◽  
Tarek S. El-Madany ◽  
René Orth ◽  
Jacob A. Nelson ◽  
Anke Hildebrandt ◽  
...  

<p>Current climate change scenarios project altered rainfall frequencies which boosts scientific interest in ecosystems' responses to prolonged dry conditions. Under less rainfall, NRWI may play an increasingly important role, Yet, only sparse data are available to assess the role of non-rainfall water input (NRWI) during times of low water availability across ecoregions. Particularly, soil water vapor adsorption has received little attention at field scale. This term is used for the phase change of water from gas to liquid at highly negative matric potential. Under such conditions, water condensates already at relative humidity < 100%. The process has been broadly studied in laboratories but little is known from field experiments, which rarely cover periods longer than one month. Yet, several studies report soil water uptake from the atmosphere during soil surface cooling and in the early mornings. Lysimeters have played a strong role in quantifying these NRWI. Eddy Covariance (EC) measurements, in contrast, are known for their limited data quality under nighttime conditions when a stable boundary layer hinders the turbulent exchange of mass and energy. Therefore, EC has not been tested yet to trace soil adsorption.<br>    <br>In this contribution we adapt a methodology to derive NRWI from lysimeters data and compare them to EC measurements. We focus mainly on adsorption and evaluate the consistency between adsorption estimated with the lysimeters and negative (downward) latent heat (LE) fluxes from EC. We apply the method to a data set that comprises three years of observations from a semi-arid Spanish tree grass ecosystem. </p><p>Our results show that during the dry season the gradient in water vapour established between the atmosphere (more humid) and the soil pores (more dry) leads to adsorption by the soil. The observations from both instruments suggest that during the dry season, nightly transport of humidity from the atmosphere towards the ground is driven by soil vapor adsorption. This process occurs each night typically in the second half, but begins increasingly earlier in the evening the dryer the conditions are. The amount of water adsorbed is not directly comparable between EC and the lysimeter readings. With the latter, we quantified a yearly mean uptake between 8.8 mm and 25 mm per year. With the lysimeters we measure additionally 23.1 mm of water that condenses as dew and fog in winter, when EC is impeded by stable conditions. We further analyze EC LE measurements from different sites to evaluate if adsorption can be detected from EC data collected at different locations.</p><p>We conclude that the temporal patterns of adsorption estimates from lysimeters match the nighttime negative LE data from the EC technique, although the absolute numbers are uncertain. This might open interesting perspective to fill the knowledge gap of the role of soil water vapor adsorption from the atmosphere at field scale and open the opportunity to broaden the topic across ecosystem research communities. Our results also highlight a potential shortcoming in the interpretation of EC measurements in the case that negative nighttime values, representing physically plausible adsorption, are neglected.</p>


2021 ◽  
Author(s):  
Susan Quick ◽  
Giulio Curioni ◽  
Phillip J Blaen ◽  
Stefan Krause ◽  
Angus Robert MacKenzie

<p>Extreme anthropogenic global change, such as increasing atmospheric carbon dioxide, can challenge long-lived organisms including trees. Carbon uptake by trees, during photosynthesis, is inevitably accompanied by leaf transpiration; elevated atmospheric CO<sub>2</sub> is, therefore, expected to reduce daytime plant water usage. The Free-Air Carbon-dioxide Enhancement (FACE) experiment at the Birmingham Institute of Forest Research (BIFoR) UK manipulates atmospheric CO<sub>2</sub> in a 150 year old mixed deciduous temperate forest. In the sub-project described here, we compare diurnal and seasonal plant-water dynamics from individual trees under treatment (elevated CO<sub>2</sub>) and control conditions<sub>.</sub> Response of Pedunculate oak (Quercus robur), as the dominant tree species, is reported for the initial three years of elevated CO<sub>2</sub>, enabling us to characterise whether the woodland is starting to adapt. Xylem sap flux measurement reflects tree water usage and has been used as a proxy for transpiration at stand scale in forest experiments. This project explores a modified sap flux analysis approach, enabling individual trees to be compared and responses to be scaled up to treatment patch level. It considers: inputs-outputs (e.g. precipitation, transpiration), water flow (e.g. xylem sap flux), temperature and radiation to see how tree-soil-water interfaces behave and change with increased CO<sub>2. </sub>Measurement methods include spot observations (phenology, porometry), and data-logged measures (e.g. of soil moisture and xylem flow). Initially sap flux and stomatal conductance are considered in comparison with previous reported studies of tree water use efficiency and estimations of water storage. By considering these key measurements driven by a tree-centred view the results provide valuable data to improve vegetation, soil and landscape models and increase understanding of trees in mature future- forest environments.</p>


2018 ◽  
Vol 219 (4) ◽  
pp. 1300-1313 ◽  
Author(s):  
Nadine Brinkmann ◽  
Stefan Seeger ◽  
Markus Weiler ◽  
Nina Buchmann ◽  
Werner Eugster ◽  
...  

2020 ◽  
Vol 282-283 ◽  
pp. 107870
Author(s):  
Félix Brédoire ◽  
Zachary E. Kayler ◽  
Jean-Luc Dupouey ◽  
Delphine Derrien ◽  
Bernd Zeller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document