A comparative analysis of the spatio-temporal variation in the phenologies of two herbaceous species and associated climatic driving factors on the Tibetan Plateau

2018 ◽  
Vol 248 ◽  
pp. 177-184 ◽  
Author(s):  
Wenquan Zhu ◽  
Zhoutao Zheng ◽  
Nan Jiang ◽  
Donghai Zhang
Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 307
Author(s):  
Chi Zhang ◽  
Naixia Mou ◽  
Jiqiang Niu ◽  
Lingxian Zhang ◽  
Feng Liu

Changes in snow cover over the Tibetan Plateau (TP) have a significant impact on agriculture, hydrology, and ecological environment of surrounding areas. This study investigates the spatio-temporal pattern of snow depth (SD) and snow cover days (SCD), as well as the impact of temperature and precipitation on snow cover over TP from 1979 to 2018 by using the ERA5 reanalysis dataset, and uses the Mann–Kendall test for significance. The results indicate that (1) the average annual SD and SCD in the southern and western edge areas of TP are relatively high, reaching 10 cm and 120 d or more, respectively. (2) In the past 40 years, SD (s = 0.04 cm decade−1, p = 0.81) and SCD (s = −2.3 d decade−1, p = 0.10) over TP did not change significantly. (3) The positive feedback effect of precipitation is the main factor affecting SD, while the negative feedback effect of temperature is the main factor affecting SCD. This study improves the understanding of snow cover change and is conducive to the further study of climate change on TP.


2021 ◽  
Vol 129 ◽  
pp. 107937
Author(s):  
Qian Liu ◽  
Zheyu Zhang ◽  
Chaofeng Shao ◽  
Run Zhao ◽  
Yang Guan ◽  
...  

2009 ◽  
Vol 6 (6) ◽  
pp. 10849-10881
Author(s):  
J. Hong ◽  
J. Kim

Abstract. The Tibetan Plateau is a critical region in the research of biosphere-atmosphere interactions on both regional and global scales due to its relation to Asian summer monsoon and El Niño. The unique environment on the Plateau provides valuable information for the evaluation of the models' surface energy partitioning associated with the summer monsoon. In this study, we investigated the surface energy partitioning on this important area through comparative analysis of two biosphere models constrained by the in-situ observation data. Indeed, the characteristics of the Plateau provide a unique opportunity to clarify the structural deficiencies of biosphere models as well as new insight into the surface energy partitioning on the Plateau. Our analysis showed that the observed inconsistency between the two biosphere models was mainly related to: 1) the parameterization for soil evaporation; 2) the way to deal with roughness lengths of momentum and scalars; and 3) the parameterization of subgrid velocity scale for aerodynamic conductance. Our study demonstrates that one should carefully interpret the modeling results on the Plateau especially during the pre-monsoon period.


Sign in / Sign up

Export Citation Format

Share Document