Spatio-temporal variation of ecological risk of agriculture and animal husbandry on the Tibetan Plateau and its regional prevention and control

2022 ◽  
Vol 37 (1) ◽  
pp. 250
Author(s):  
Qian-wen NIE ◽  
Li HE ◽  
Chuang YIN ◽  
Meng TANG ◽  
Pei-pei TIAN ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinlong Shi ◽  
Xing Gao ◽  
Shuyan Xue ◽  
Fengqing Li ◽  
Qifan Nie ◽  
...  

AbstractThe novel coronavirus pneumonia (COVID-19) outbreak that emerged in late 2019 has posed a severe threat to human health and social and economic development, and thus has become a major public health crisis affecting the world. The spread of COVID-19 in population and regions is a typical geographical process, which is worth discussing from the geographical perspective. This paper focuses on Shandong province, which has a high incidence, though the first Chinese confirmed case was reported from Hubei province. Based on the data of reported confirmed cases and the detailed information of cases collected manually, we used text analysis, mathematical statistics and spatial analysis to reveal the demographic characteristics of confirmed cases and the spatio-temporal evolution process of the epidemic, and to explore the comprehensive mechanism of epidemic evolution and prevention and control. The results show that: (1) the incidence rate of COVID-19 in Shandong is 0.76/100,000. The majority of confirmed cases are old and middle-aged people who are infected by the intra-province diffusion, followed by young and middle-aged people who are infected outside the province. (2) Up to February 5, the number of daily confirmed cases shows a trend of “rapid increase before slowing down”, among which, the changes of age and gender are closely related to population migration, epidemic characteristics and intervention measures. (3) Affected by the regional economy and population, the spatial distribution of the confirmed cases is obviously unbalanced, with the cluster pattern of “high–low” and “low–high”. (4) The evolution of the migration pattern, affected by the geographical location of Wuhan and Chinese traditional culture, is dominated by “cross-provincial” and “intra-provincial” direct flow, and generally shows the trend of “southwest → northeast”. Finally, combined with the targeted countermeasures of “source-flow-sink”, the comprehensive mechanism of COVID-19 epidemic evolution and prevention and control in Shandong is revealed. External and internal prevention and control measures are also figured out.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 307
Author(s):  
Chi Zhang ◽  
Naixia Mou ◽  
Jiqiang Niu ◽  
Lingxian Zhang ◽  
Feng Liu

Changes in snow cover over the Tibetan Plateau (TP) have a significant impact on agriculture, hydrology, and ecological environment of surrounding areas. This study investigates the spatio-temporal pattern of snow depth (SD) and snow cover days (SCD), as well as the impact of temperature and precipitation on snow cover over TP from 1979 to 2018 by using the ERA5 reanalysis dataset, and uses the Mann–Kendall test for significance. The results indicate that (1) the average annual SD and SCD in the southern and western edge areas of TP are relatively high, reaching 10 cm and 120 d or more, respectively. (2) In the past 40 years, SD (s = 0.04 cm decade−1, p = 0.81) and SCD (s = −2.3 d decade−1, p = 0.10) over TP did not change significantly. (3) The positive feedback effect of precipitation is the main factor affecting SD, while the negative feedback effect of temperature is the main factor affecting SCD. This study improves the understanding of snow cover change and is conducive to the further study of climate change on TP.


2020 ◽  
Author(s):  
Yaokui Cui ◽  
Chao Zeng ◽  
Jie Zhou ◽  
Xi Chen

<p><strong>Abstract</strong>:</p><p>Surface soil moisture plays an important role in the exchange of water and energy between the land surface and the atmosphere, and critical to climate change study. The Tibetan Plateau (TP), known as “The third pole of the world” and “Asia’s water towers”, exerts huge influences on and sensitive to global climates. Long time series of and spatio-temporal continuum soil moisture is helpful to understand the role of TP in this situation. In this study, a dataset of 14-year (2002–2015) Spatio-temporal continuum remotely sensed soil moisture of the TP at 0.25° resolution is obtained, combining MODIS optical products and ESA (European Space Agency) ECV (Essential Climate Variable) combined soil moisture products based on General Regression Neural Network (GRNN). The validation of the dataset shows that the soil moisture is well reconstructed with R<sup>2</sup> larger than 0.65, and RMSE less than 0.08 cm<sup>3</sup> cm<sup>-3</sup> and Bias less than 0.07 cm<sup>3</sup> cm<sup>-3 </sup>at 0.25° and 1° spatial scale, compared with the in-situ measurements in the central of TP. And then, spatial and temporal characteristics and trend of SM over TP were analyzed based on this dataset.</p><p><strong>Keywords: </strong>Soil moisture; Remote Sensing; Dataset; GRNN; ECV; Tibetan Plateau</p>


2016 ◽  
Vol 13 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Ming-jun Ding ◽  
Lan-hui Li ◽  
Yong Nie ◽  
Qian Chen ◽  
Yi-li Zhang

Sign in / Sign up

Export Citation Format

Share Document