Adjusting the sowing date of spring maize did not mitigate against heat stress in the North China Plain

2021 ◽  
Vol 298-299 ◽  
pp. 108274
Author(s):  
Zhen Gao ◽  
Han-Yu Feng ◽  
Xiao-Gui Liang ◽  
Shan Lin ◽  
Xue Zhao ◽  
...  
2016 ◽  
Vol 15 (12) ◽  
pp. 2677-2687 ◽  
Author(s):  
Zhi-qiang TAO ◽  
Yuan-quan CHEN ◽  
Chao LI ◽  
Juan-xiu ZOU ◽  
Peng YAN ◽  
...  

2018 ◽  
Vol 205 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Beijing Tian ◽  
Jincheng Zhu ◽  
Yanshun Nie ◽  
Cailong Xu ◽  
Qingfeng Meng ◽  
...  

2020 ◽  
Vol 12 (11) ◽  
pp. 4588
Author(s):  
Huanyuan Wang ◽  
Baoguo Li ◽  
Liang Jin ◽  
Kelin Hu

The North China Plain (NCP) is one of the most important grain production regions in China. However, it currently experiences water shortage, severe nonpoint source pollution, and low water and N use efficiencies (WUE and NUE). To explore sustainable agricultural development in this region, a field experiment with different cropping systems was conducted in suburban Beijing. These cropping systems included a winter wheat and summer maize rotation system for one year (WM), three harvests (winter wheat-summer maize-spring maize) in two years (HT), and continuous spring maize monoculture (CS). Novel ways were explored to improve WUE and NUE and to reduce N loss via the alternative cropping system based on the simulation results of a soil-crop system model. Results showed that the annual average yields were ranked as follows: WM > HT > CS. The N leaching of WM was much larger than that of HT and CS. WUE and NUE were ranked as follows: WM < HT < CS. Comprehensive evaluation indices based on agronomic and environmental effects indicated that CS or HT have significant potential for approaches characterized by water-saving, fertilizer-saving, high-WUE, and high-NUE properties. Once spring maize yield reached an ideal level HT and CS became a high-yield, water-saving, and fertilizer-saving cropping systems. Therefore, this method would be beneficial to sustainable agricultural development in the NCP.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 696 ◽  
Author(s):  
Shah Jahan Leghari ◽  
Kelin Hu ◽  
Hao Liang ◽  
Yichang Wei

The North China Plain (NCP) is experiencing serious groundwater level decline and groundwater nitrate contamination due to excessive water pumping and application of nitrogen (N) fertilizer. In this study, grain yield, water and N use efficiencies under different cropping systems including two harvests in 1 year (winter wheat–summer maize) based on farmer (2H1Y)FP and optimized practices (2H1Y)OPT, three harvests in 2 years (winter wheat–summer maize–spring maize, 3H2Y), and one harvest in 1 year (spring maize, 1H1Y) were evaluated using the water-heat-carbon-nitrogen simulator (WHCNS) model. The 2H1YFP system was maintained with 100% irrigation and fertilizer, while crop water requirement and N demand for other cropping systems were optimized and managed by soil testing. In addition, a scenario analysis was also performed under the interaction of linearly increasing and decreasing N rates, and irrigation levels. Results showed that the model performed well with simulated soil water content, soil N concentration, leaf area index, dry matter, and grain yield. Statistically acceptable ranges of root mean square error, Nash–Sutcliffe model efficiency, index of agreement values close to 1, and strong correlation coefficients existed between simulated and observed values. We concluded that replacing the prevalent 2H1YFP with 1H1Y would be ecofriendly at the cost of some grain yield decline. This cropping system had the highest average water use (2.1 kg m−3) and N use efficiencies (4.8 kg kg–1) on reduced water (56.64%) and N (81.36%) inputs than 2H1YFP. Whereas 3H2Y showed insignificant results in terms of grain yield, and 2H1YFP was unsustainable. The 2H1YFP system consumed a total of 745 mm irrigation and 1100 kg N ha–1 in two years. When farming practices were optimized for two harvests in 1 year system (2H1Y)OPT, then grain yield improved and water (18.12%) plus N (61.82%) consumptions were minimized. There was an ample amount of N saved, but water conservation was still unsatisfactory. However, considering the results of scenario analyses, it is recommended that winter wheat would be cultivated at <200 mm irrigation by reducing one irrigation event.


2018 ◽  
Vol 222 ◽  
pp. 230-237 ◽  
Author(s):  
Yi Chen ◽  
Zhao Zhang ◽  
Fulu Tao ◽  
Taru Palosuo ◽  
Reimund P. Rötter

Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 198 ◽  
Author(s):  
Xuepeng Zhang ◽  
Jiali Cheng ◽  
Biao Wang ◽  
Peng Yan ◽  
Hongcui Dai ◽  
...  

The maize sole cropping system solves problems related to ground water resource shortages and guarantees food security in the North China Plain. Using optimal sowing dates is an effective management practice for increasing maize yield. The goal of this study was to explore an optimum sowing date for high-yield maize. Six sowing dates (SDs) from early April to late June with intervals of 10 to 20 days between SD—SD1 (early April), SD2 (mid to late April), SD3 (early May), SD4 (mid to late May), SD5 (early June), SD6 (late June)—were applied from 2012 to 2017. The results showed that yield was correlated with the sowing date based on the thermal time before sowing (r = 0.62**), which was defined as the pre-thermal time (PTt), and that the yield was steadily maintained at a high level (>10,500 kg ha−1) when PTt was greater than 479 °C. To satisfy the growing degree-days required for maturity, maize needs to be sown before a PTt of 750 °C. Data analysis of the results from 2014, 2015, and 2017 revealed the following: i) Most of the grain-filling parameters of late-sown dates (SD4, SD5 and SD6) were better than those in early-sown dates (SD1, SD2, and SD3) in all years, because of the high daily maximum temperature (Tmax) and wide diurnal temperature (Td) from silking to blister (R1–R2) of early-sown dates. The weight of maximum grain-filling rate (Wmax) of SD3 decreased compare with SD4 by the narrow Td from blister to physiological maturity (R2–R6) in all years (−5, −12, and −33 mg kernel−1 in 2014, 2015, and 2017, respectively). ii) In 2017, the pollination failure rates of early-sown dates were 8.4~14.5%, which was caused by the high Tmax and Td of R1–R2. The apical kernel abortion rates were 28.6 (SD2) and 38.7% (SD3), which were affected by Tmax and Td during R2–R6. iii) Compared with late-sown dates, the wide Td of early-sown dates in R1–R2 was caused by higher Tmax, but the narrow Td in R2-R6 was caused by higher Tmin. Our results indicate that high-yielding maize can be obtained by postponing the sowing date with a PTt of 480~750 °C, which can prevent the negative effects of the high Tmax of R1–R2 and high Tmin of R2–R6 on kernel number and weight formation. Moreover, these above-mentioned traits should be considered for heat tolerance breeding to further increase the maize yield.


Sign in / Sign up

Export Citation Format

Share Document