Stress memory and phyllosphere/soil legacy underlie tolerance and plasticity of Leymus chinensis to periodic drought risk

2022 ◽  
Vol 312 ◽  
pp. 108717
Author(s):  
Xiliang Li ◽  
Saheed Olaide Jimoh ◽  
Yuanheng Li ◽  
Junjie Duan ◽  
Yanwei Cui ◽  
...  
2017 ◽  
Vol 27 (2) ◽  
pp. 161-169 ◽  
Author(s):  
Lidiia Samarina ◽  
Valentina Malyarovskaya ◽  
Yulija Abilfazova ◽  
Natalia Platonova ◽  
Kristina Klemeshova ◽  
...  

Structural and physiological responses of chrysanthemum to repeated osmotic stress were studied. Plants were cultured for 2 weeks (for each stress1 and stress 2) on half MS supplemented with mannitol 100 mM (Treatment I) and 200 mM (Treatment II). First stress inhibited growth parameters stronger than second stress in treatment I. In treatment II both stress events strongly inhibited growth parameters of micro‐shoots. Proline content exceeded control 6 ‐ 8 times after 1st stress, and 2 ‐ 5 times after the 2nd stress in treatments I and II, respectively. Soluble protein was accumulated in leaves during both stress exposures, and 2 ‐ 2.5 times exceeded control after the 2nd stress. Relative water content in both treatments increased after the 2nd stress exposure. In treatment II chlorophyll а and carotenoids contents were 8.78 and 4.62 mg/g comparing to control (4.21 and 2.25 mg/g, respectively) after the 1st stress. But after the 2nd stress there was no difference with control.Plant Tissue Cult. & Biotech. 27(2): 161-169, 2017 (December)


2017 ◽  
Vol 21 (3) ◽  
pp. 1573-1591 ◽  
Author(s):  
Louise Crochemore ◽  
Maria-Helena Ramos ◽  
Florian Pappenberger ◽  
Charles Perrin

Abstract. Many fields, such as drought-risk assessment or reservoir management, can benefit from long-range streamflow forecasts. Climatology has long been used in long-range streamflow forecasting. Conditioning methods have been proposed to select or weight relevant historical time series from climatology. They are often based on general circulation model (GCM) outputs that are specific to the forecast date due to the initialisation of GCMs on current conditions. This study investigates the impact of conditioning methods on the performance of seasonal streamflow forecasts. Four conditioning statistics based on seasonal forecasts of cumulative precipitation and the standardised precipitation index were used to select relevant traces within historical streamflows and precipitation respectively. This resulted in eight conditioned streamflow forecast scenarios. These scenarios were compared to the climatology of historical streamflows, the ensemble streamflow prediction approach and the streamflow forecasts obtained from ECMWF System 4 precipitation forecasts. The impact of conditioning was assessed in terms of forecast sharpness (spread), reliability, overall performance and low-flow event detection. Results showed that conditioning past observations on seasonal precipitation indices generally improves forecast sharpness, but may reduce reliability, with respect to climatology. Conversely, conditioned ensembles were more reliable but less sharp than streamflow forecasts derived from System 4 precipitation. Forecast attributes from conditioned and unconditioned ensembles are illustrated for a case of drought-risk forecasting: the 2003 drought in France. In the case of low-flow forecasting, conditioning results in ensembles that can better assess weekly deficit volumes and durations over a wider range of lead times.


2021 ◽  
pp. e01599
Author(s):  
Li Liu ◽  
Shining Zuo ◽  
Mingyan Ma ◽  
Jiahuan Li ◽  
Lizhu Guo ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1259
Author(s):  
Rei Itsukushima

Increasing water demand due to population growth, economic development, and changes in rainfall patterns due to climate change are likely to alter the duration and magnitude of droughts. Understanding the relationship between low-flow conditions and controlling factors relative to the magnitude of a drought is important for establishing sustainable water resource management based on changes in future drought risk. This study demonstrates the relationship between low-flow and controlling factors under different severities of drought. I calculated the drought runoff coefficient for six types of occurrence probability, using past observation data of annual total discharge and precipitation in the Japanese archipelago, where multiple climate zones exist. Furthermore, I investigated the pattern of change in the drought runoff coefficient in accordance with the probability of occurrence of drought, and relationships among the coefficient and geological, land use, and topographical factors. The drought runoff coefficient for multiple drought magnitudes exhibited three behaviors, corresponding to the pattern of precipitation. Results from a generalized linear model (GLM) revealed that the controlling factors differed depending on the magnitude of the drought. During high-frequency droughts, the drought runoff coefficient was influenced by geological and vegetation factors, whereas land use and topographical factors influenced the drought runoff coefficient during low-frequency droughts. These differences were caused by differences in runoff, which dominated stream discharge, depending on the magnitude of the drought. Therefore, for effective water resource management, estimation of the volume of drought runoff needs to consider the pattern of precipitation, geology, land use, and topography.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1431
Author(s):  
David Ortega-Gaucin ◽  
Jesús A. Ceballos-Tavares ◽  
Alejandro Ordoñez Sánchez ◽  
Heidy V. Castellano-Bahena

Drought is one of the major threats to water and food security in many regions around the world. The present study focuses on the evaluation of agricultural drought risk from an integrated perspective, that is, emphasizing the combined role of hazard, exposure, and vulnerability to drought. For this purpose, we used the Mexican state of Zacatecas as a case study. This state is one of the most vulnerable to the adverse effects of agricultural drought in the country. The proposed method includes three stages: first, we analyzed the risk of agricultural drought at the municipal scale using the FAO Agricultural Stress Index System (ASIS) in its country version (Country-Level ASIS) and also determined a Drought Hazard Index (DHI). Subsequently, we conducted a municipal assessment of exposure and vulnerability to drought based on a set of socioeconomic and environmental indicators, which we combined using an analytical procedure to generate the Drought Exposure Index (DEI) and the Drought Vulnerability Index (DVI). Finally, we determined a Drought Risk Index (DRI) based on a weighted addition of the hazard, exposure, and vulnerability indices. Results showed that 32% of the state’s municipalities are at high and very high risk of agricultural drought; these municipalities are located mainly in the center and north of the state, where 75.8% of agriculture is rainfed, 63.6% of production units are located, and 67.4% of the state’s population depends on agricultural activity. These results are in general agreement with those obtained by other studies analyzing drought in the state of Zacatecas using different meteorological drought indices, and the results are also largely in line with official data on agricultural surfaces affected by drought in this state. The generated maps can help stakeholders and public policymakers to guide investments and actions aimed at reducing vulnerability to and risk of agricultural drought. The method described can also be applied to other Mexican states or adapted for use in other states or countries around the world.


Sign in / Sign up

Export Citation Format

Share Document