The responses of two genes encoding phytoene synthase (Psy) and phytoene desaturase (Pds) to nitrogen limitation and salinity up-shock with special emphasis on carotenogenesis in Dunaliella parva

2018 ◽  
Vol 32 ◽  
pp. 1-10 ◽  
Author(s):  
Changhua Shang ◽  
Wen Wang ◽  
Shunni Zhu ◽  
Zhongming Wang ◽  
Lei Qin ◽  
...  
2006 ◽  
Vol 33 (4) ◽  
pp. 347 ◽  
Author(s):  
Changchun Wang ◽  
Xinzhong Cai ◽  
Xuemin Wang ◽  
Zhong Zheng

Arabidopsis thaliana (L.) Heynh. is a model plant species in which to study plant gene functions. Recently developed virus-induced gene silencing (VIGS) offers a rapid and high-throughput technique platform for gene function analysis. In this paper we report optimisation of tobacco rattle virus (TRV)-induced gene silencing in Arabidopsis. The parameters potentially affecting the efficiency of VIGS in Arabidopsis were investigated. These included the concentration and pre-incubation of Agrobacterium inocula (agro-inocula), the concentration of acetosyringone included in agro-inocula, the Agrobacterium inoculation (agro-inoculation) method, the ecotypes and the growth stages of Arabidopsis plants for agro-inoculation, and the growth temperature of agro-inoculated plants. The optimised VIGS procedure involves preparing the agro-inocula with OD600 of 2.0, pre-incubating for 2 h in infiltration buffer containing 200 μm acetosyringone, agro-inoculating by vacuum infiltration, and growth of agro-inoculated plants at 22 −24°C. Following this procedure consistent and highly efficient VIGS was achieved for the genes encoding phytoene desaturase (PDS) and actin in Arabidopsis. The silencing phenotype lasts for at least 6 weeks, and is applicable in at least seven ecotypes, including Col-0, Cvi-0, Sd, Nd-1, Ws-0, Bay-0 and Ler. TRV-induced VIGS was expressed not only in leaves, but also in stems, inflorescences and siliques. However, VIGS was not transmissible through seed to the subsequent generation. The optimised procedure of the TRV-induced gene silencing should facilitate high-throughput functional analysis of genes in Arabidopsis.


2017 ◽  
Vol 23 ◽  
pp. 196-202 ◽  
Author(s):  
Changhua Shang ◽  
Shunni Zhu ◽  
Zhongming Wang ◽  
Lei Qin ◽  
Mohammad Asraful Alam ◽  
...  

2011 ◽  
Vol 126 (4) ◽  
pp. 1686-1692 ◽  
Author(s):  
Pham Anh Tuan ◽  
Jae Kwang Kim ◽  
Nam Il Park ◽  
Sook Young Lee ◽  
Sang Un Park

2011 ◽  
Vol 59 (10) ◽  
pp. 5412-5417 ◽  
Author(s):  
Pham Anh Tuan ◽  
Jae Kwang Kim ◽  
Haeng Hoon Kim ◽  
Sook Young Lee ◽  
Nam Il Park ◽  
...  

1992 ◽  
Author(s):  
John Shaw ◽  
Arieh Rosner ◽  
Thomas Pirone ◽  
Benjamin Raccah ◽  
Yehezkiel Antignus

In this research we have studied the molecular biology of carotenoid biosynthesis in tomato. The investigations focused on the genes Pds and Psy, encoding desaturase and phytoene synthase, respectively, which are key enzymes in the biosynthetic pathway of lycopene and b-carotene. In addition, we have investigated the genes for lycopene cyclase. We have cloned from tomato and characterized the cDNA of CrtL-e, which encodes the lycopene e-cyclase, and analyzed its expression during fruit development. The results establish a paradigm for the regulation of carotenoid pigment biosynthesis during the ripening process of fruits. It is concluded that transcriptional regulation of genes that encode carotenoid-biosynthesis enzymes is the major mechanism that governs specific pigment accumulation. During the ripening of tomato fruits transcription of the genes encoding the enzymes phytoene synthase and phytoene desaturase is up-regulated, while the transcription of the genes for both lycopene cyclases decreases and thus the conversion of lycopene to subsequent carotenoids is inhibited. These findings support the working hypothesis of the molecular approach to manipulating carotenogenesis by altering gene expression in transgenic plants, and offer obvious strategies to future application in agriculture. The molecular and physiological knowledge on carotenogenesis gained in this project, suggest a concept for manipulating gene expression that will alter carotenoid composition in fruits and flowers.


1993 ◽  
Author(s):  
Joseph Hirschberg ◽  
Gloria A. Moore

In this research we have studied the molecular biology of carotenoid biosynthesis in tomato. The investigations focused on the genes Pds and Psy, encoding desaturase and phytoene synthase, respectively, which are key enzymes in the biosynthetic pathway of lycopene and b-carotene. In addition, we have investigated the genes for lycopene cyclase. We have cloned from tomato and characterized the cDNA of CrtL-e, which encodes the lycopene e-cyclase, and analyzed its expression during fruit development. The results establish a paradigm for the regulation of carotenoid pigment biosynthesis during the ripening process of fruits. It is concluded that transcriptional regulation of genes that encode carotenoid-biosynthesis enzymes is the major mechanism that governs specific pigment accumulation. During the ripening of tomato fruits transcription of the genes encoding the enzymes phytoene synthase and phytoene desaturase is up-regulated, while the transcription of the genes for both lycopene cyclases decreases and thus the conversion of lycopene to subsequent carotenoids is inhibited. These findings support the working hypothesis of the molecular approach to manipulating carotenogenesis by altering gene expression in transgenic plants, and offer obvious strategies to future application in agriculture. The molecular and physiological knowledge on carotenogenesis gained in this project, suggest a concept for manipulating gene expression that will alter carotenoid composition in fruits and flowers.


2019 ◽  
Vol 63 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Claire Francastel ◽  
Frédérique Magdinier

Abstract Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.


Sign in / Sign up

Export Citation Format

Share Document