Early-life stress affects song complexity, song learning and volume of the brain nucleus RA in adult male song sparrows

2013 ◽  
Vol 86 (1) ◽  
pp. 25-35 ◽  
Author(s):  
Kim L. Schmidt ◽  
S. Drew Moore ◽  
Elizabeth A. MacDougall-Shackleton ◽  
Scott A. MacDougall-Shackleton
2021 ◽  
Vol 17 ◽  
pp. 174480692110113
Author(s):  
Paul G Green ◽  
Pedro Alvarez ◽  
Jon D Levine

Fibromyalgia and other chronic musculoskeletal pain syndromes are associated with stressful early life events, which can produce a persistent dysregulation in the hypothalamic-pituitary adrenal (HPA) stress axis function, associated with elevated plasm levels of corticosterone in adults. To determine the contribution of the HPA axis to persistent muscle hyperalgesia in adult rats that had experienced neonatal limited bedding (NLB), a form of early-life stress, we evaluated the role of glucocorticoid receptors on muscle nociceptors in adult NLB rats. In adult male and female NLB rats, mechanical nociceptive threshold in skeletal muscle was significantly lower than in adult control (neonatal standard bedding) rats. Furthermore, adult males and females that received exogenous corticosterone (via dams’ milk) during postnatal days 2–9, displayed a similar lowered mechanical nociceptive threshold. To test the hypothesis that persistent glucocorticoid receptor signaling in the adult contributes to muscle hyperalgesia in NLB rats, nociceptor expression of glucocorticoid receptor (GR) was attenuated by spinal intrathecal administration of an oligodeoxynucleotide (ODN) antisense to GR mRNA. In adult NLB rats, GR antisense markedly attenuated muscle hyperalgesia in males, but not in females. These findings indicate that increased corticosterone levels during a critical developmental period (postnatal days 2–9) produced by NLB stress induces chronic mechanical hyperalgesia in male and female rats that persists in adulthood, and that this chronic muscle hyperalgesia is mediated, at least in part, by persistent stimulation of glucocorticoid receptors on sensory neurons, in the adult male, but not female rat.


2013 ◽  
Vol 43 (1) ◽  
pp. 79
Author(s):  
R. Ghalamghash ◽  
H.Z. Mammedov ◽  
H. Ashayeri ◽  
A. Hosseini

Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Baojian Xue ◽  
Terry Beltz ◽  
Fang Guo ◽  
David M Pollock ◽  
Jennifer S Pollock ◽  
...  

Separation of neonatal rodent pups from their mothers has been used as a model to study the effects of early life stress (ELS) on behavioral and physiological responses in adults. Using an Induction-Delay-Expression experimental paradigm, our previous studies demonstrate that a wide range of stressors administered during an induction period produces hypertensive response sensitization (HTRS) in response to a subsequent pro-hypertensive stimulus. HTRS is accompanied by activation of the brain renin-angiotensin system (RAS) and CNS inflammation. The present study investigated whether ELS induces HTRS and changes in brain-related underlying mechanisms. Rat neonates from Sprague-Dawley breeders were subjected to ELS by separating them each morning from their mothers for 3 h on postnatal days 2 to 14. Pups from non-handled litters formed control groups. At 10 weeks of age, male rats were used to evaluate blood pressure and autonomic function using telemetric probes and pharmacological methods. In addition, in separate control and ELS groups, the lamina terminalis (LT) structures and the hypothalamic paraventricular nucleus (PVN) were analyzed for mRNA expression of RAS components and proinflammatory cytokines. Adult ELS rats as compared to non-separated controls exhibited 1) HTRS during expression testing using 2 week ANG II infusions (120 ng/kg/min s.c.; ELS animals, Δ45.5±4.5 mmHg vs. controls, Δ22.4±3.1 mmHg); 2) a greater reduction in mean arterial pressure following ganglionic blockade (hexamethonium, 30 mg/kg, ip), 3) increased sympathetic drive to the heart (atenolol, 8 mg/kg, ip), 4) decreased vagal tone (atropine, 8 mg/kg, ip), and 5) increased mRNA expression of several components of the brain RAS and proinflammatory cytokines in the LT and PVN. These results suggest that maternal ELS may predispose individuals to hypertension that is mediated by upregulation of the brain RAS and proinflammatory cytokines and increased sympathetic drive to the cardiovascular system.


2020 ◽  
Vol 21 (19) ◽  
pp. 7212
Author(s):  
Mayumi Nishi

Early-life stress during the prenatal and postnatal periods affects the formation of neural networks that influence brain function throughout life. Previous studies have indicated that maternal separation (MS), a typical rodent model equivalent to early-life stress and, more specifically, to child abuse and/or neglect in humans, can modulate the hypothalamic–pituitary–adrenal (HPA) axis, affecting subsequent neuronal function and emotional behavior. However, the neural basis of the long-lasting effects of early-life stress on brain function has not been clarified. In the present review, we describe the alterations in the HPA-axis activity—focusing on serum corticosterone (CORT)—and in the end products of the HPA axis as well as on the CORT receptor in rodents. We then introduce the brain regions activated during various patterns of MS, including repeated MS and single exposure to MS at various stages before weaning, via an investigation of c-Fos expression, which is a biological marker of neuronal activity. Furthermore, we discuss the alterations in behavior and gene expression in the brains of adult mice exposed to MS. Finally, we ask whether MS repeats itself and whether intergenerational transmission of child abuse and neglect is possible.


2014 ◽  
Vol 196 ◽  
pp. 72-80 ◽  
Author(s):  
Kim L. Schmidt ◽  
Elizabeth A. MacDougall-Shackleton ◽  
Kiran K. Soma ◽  
Scott A. MacDougall-Shackleton

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Gayane Grigoryan ◽  
Menahem Segal

Early life adversaries have a profound impact on the developing brain structure and functions that persist long after the original traumatic experience has vanished. One of the extensively studied brain structures in relation to early life stress has been the hippocampus because of its unique association with cognitive processes of the brain. While the entire hippocampus shares the same intrinsic organization, it assumes different functions in its dorsal and ventral sectors (DH and VH, resp.), based on different connectivity with other brain structures. In the present review, we summarize the differences between DH and VH and discuss functional and structural effects of prenatal stress in the two sectors, with the realization that much is yet to be explored in understanding the opposite reactivity of the DH and VH to stressful stimulation.


2013 ◽  
Vol 85 (4) ◽  
pp. 825-837 ◽  
Author(s):  
Kim L. Schmidt ◽  
Erin S. McCallum ◽  
Elizabeth A. MacDougall-Shackleton ◽  
Scott A. MacDougall-Shackleton

2021 ◽  
Vol 12 ◽  
Author(s):  
Kaila N. Parker ◽  
Michael H. Donovan ◽  
Kylee Smith ◽  
Linda J. Noble-Haeusslein

Despite the high incidence of brain injuries in children, we have yet to fully understand the unique vulnerability of a young brain to an injury and key determinants of long-term recovery. Here we consider how early life stress may influence recovery after an early age brain injury. Studies of early life stress alone reveal persistent structural and functional impairments at adulthood. We consider the interacting pathologies imposed by early life stress and subsequent brain injuries during early brain development as well as at adulthood. This review outlines how early life stress primes the immune cells of the brain and periphery to elicit a heightened response to injury. While the focus of this review is on early age traumatic brain injuries, there is also a consideration of preclinical models of neonatal hypoxia and stroke, as each further speaks to the vulnerability of the brain and reinforces those characteristics that are common across each of these injuries. Lastly, we identify a common mechanistic trend; namely, early life stress worsens outcomes independent of its temporal proximity to a brain injury.


Sign in / Sign up

Export Citation Format

Share Document