Effects of yeasts on rumen bacterial flora, abnormal metabolites, and blood gas in sheep with induced subacute ruminal acidosis

Author(s):  
Guohao Han ◽  
Xiaosha Gao ◽  
Jinwei Duan ◽  
Huiqin Zhang ◽  
Yan Zheng ◽  
...  
2008 ◽  
Vol 18 (3) ◽  
pp. 229-232 ◽  
Author(s):  
M. Morgante ◽  
M. Gianesella ◽  
S. Casella ◽  
L. Ravarotto ◽  
C. Stelletta ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-4 ◽  
Author(s):  
Matteo Gianesella ◽  
Massimo Morgante ◽  
Chiara Cannizzo ◽  
Annalisa Stefani ◽  
Paolo Dalvit ◽  
...  

Subacute Ruminal Acidosis (SARA) corresponds to an imbalance between lactate-producing bacteria and lactate-using bacteria, which results in a change in ruminal pH associated with a prevalent consumption of rapidly fermentable carbohydrates. In our study, 216 primiparus and multiparus dairy cows were selected from 20 Italian intensive dairy herds and were divided into three groups based on the risk of SARA. All the dairy cows had high average milk production. After blood sampling, a complete blood gas analysis was performed. One-way ANOVA was performed to compare the three groups. Cont, PC, blood pH, Hb, urinary pH, and rumen pH were significantly lower in cows with rumen . These results indicate that blood gas analysis is a valuable tool to diagnose acidosis in dairy cows because it provides good assessment of acidosis while being less invasive than rumen pH analysis.


2021 ◽  
Vol 9 (3) ◽  
pp. 632
Author(s):  
Ying Zhang ◽  
Chao Wang ◽  
Along Peng ◽  
Hao Zhang ◽  
Hongrong Wang

Subacute ruminal acidosis (SARA) is often caused by feeding a high-concentrate diet in intensive ruminant production. Although previous studies have shown that dietary thiamine supplementation can effectively increase rumen pH and modify rumen fermentation, the effect of thiamine supplementation on rumen carbohydrate-related microorganisms and enzymes in goats under SARA conditions remain unclear. Therefore, the objective of the present study was to investigate the effects of dietary thiamine supplementation on carbohydrate-associated microorganisms and enzymes in the rumen of Saanen goats fed high-concentrate diets. Nine healthy mid-lactating Saanen goats in parity 1 or 2 were randomly assigned into three treatments: A control diet (CON; concentrate:forage (30:70)), a high-concentrate diet (HC; concentrate:forage (70:30)), and a high-concentrate diet with 200 mg of thiamine/kg of DMI (HCT; concentrate:forage (70:30)). Compared with the HC group, dietary thiamine supplementation improved ruminal microbes associated with fiber, including Prevotella, Fibrobacter, Neocallimastix, and Piromyces (p < 0.05). In addition, an increase in the relative abundance of enzymes involved in both fiber degradation and starch degradation, such as CBM16, GH3, and GH97, was observed in the HCT treatment. (p < 0.05). Thus, thiamine supplementation can improve carbohydrate metabolism by increasing the abundance of the microorganisms and enzymes involved in carbohydrate degradation. In conclusion, this study revealed the relationship between ruminal microbiota and enzymes, and these findings contributed to solving the problems arising from the high-concentrate feeding in ruminant production and to providing a new perspective on ruminant health.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Natalia Sato Minami ◽  
Rejane Santos Sousa ◽  
Francisco Leonardo Costa Oliveira ◽  
Mailson Rennan Borges Dias ◽  
Débora Aparecida Cassiano ◽  
...  

We evaluated the clinical aspects and feeding behavior of cattle with subacute ruminal acidosis (SARA) caused by short-chain fatty acids (SCFAs). Ten healthy Nelore heifers were subjected to an adjusted SARA induction protocol using citrus pulp (CP). Clinical examinations were performed at baseline and at 3, 6, 9, 12, 15, 18, and 24 h intervals after induction, with ruminal fluid, blood, and feces sampling. The animals’ feeding behavior was evaluated on, before, and for 3 days after SARA by observing the animals every 5 min for 24 h. The dry matter intake (DMI) was recorded daily. The ruminal pH during SARA was always lower than baseline, with an acidotic duration of 547 ± 215 min, a minimum pH of 5.38 ± 0.16, and an average pH of 5.62 ± 0.1. SARA was mainly caused by SCFAs (maximum 118.4 ± 9.3 mmol/L), with the production of l-lactic acids (7.17 mmol/L) and d-lactic acids (0.56 mmol/L) 6 h after the experiment began. The DMI was reduced by 66% and 48% on days 1 and 2, respectively, and returned to normal levels on day 3. SARA caused a reduction in feed intake and rumination time, as well as an increase in the time spent in decubitus on days 1 and 2. These results were influenced by the ruminal pH, ruminal movement, and osmolarity. Furthermore, SARA caused different degrees of depression, which became more pronounced with higher ruminal lactic acid concentrations.


Author(s):  
A.B. Thorat ◽  
S.T. Borikar ◽  
M.F.M.F. Siddiqui ◽  
S.R. Rajurkar ◽  
S.D. Moregaonkar ◽  
...  

Background: Subacute ruminal acidosis is one of the most important nutritional diseases in cattle. The consequence of feeding excessive amounts of rapidly fermentable carbohydrates in conjunction with inadequate fiber to ruminants leads to subacute ruminal acidosis. Cattles are at a high risk of developing SARA. The present research work was undertaken to study haemato-biochemical alterations in SARA affected cattle treated with different treatment regimens. Methods: Present work was done to study the efficacy of sodium bicarbonate powder, Azadirachta indica (Neem) dried leaves powder and Saccharomyces cervisiae (Yeast) in sub-acute ruminal acidosis (SARA) in cattle. Out of 148 cattle screened, 24 (16.22%) were diagnosed as SARA, 13 (56.52%) animals were in mid stage of lactation followed by early and late lactation (5 cases, 21.74% each).Result: After sodium bicarbonate treatment, animals showed changes in various haemato-biochemical parameters. However decreased neutrophils and ALT was also observed. After treatment of Azadirachta indica reduction in lymphocyte and eosinophil count was seen.


Sign in / Sign up

Export Citation Format

Share Document