scholarly journals Inoculation and co-inoculation of alfalfa seedlings with root growth promoting microorganisms ( Piriformospora indica , Glomus intraradices and Sinorhizobium meliloti ) affect molecular structures, nutrient profiles and availability of hay for ruminants

2018 ◽  
Vol 4 (1) ◽  
pp. 90-99 ◽  
Author(s):  
Milad Jafari ◽  
Mojtaba Yari ◽  
Mehdi Ghabooli ◽  
Mozgan Sepehri ◽  
Ebrahim Ghasemi ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1665
Author(s):  
Natalia Nikonorova ◽  
Evan Murphy ◽  
Cassio Flavio Fonseca de Lima ◽  
Shanshuo Zhu ◽  
Brigitte van de Cotte ◽  
...  

Auxin plays a dual role in growth regulation and, depending on the tissue and concentration of the hormone, it can either promote or inhibit division and expansion processes in plants. Recent studies have revealed that, beyond transcriptional reprogramming, alternative auxin-controlled mechanisms regulate root growth. Here, we explored the impact of different concentrations of the synthetic auxin NAA that establish growth-promoting and -repressing conditions on the root tip proteome and phosphoproteome, generating a unique resource. From the phosphoproteome data, we pinpointed (novel) growth regulators, such as the RALF34-THE1 module. Our results, together with previously published studies, suggest that auxin, H+-ATPases, cell wall modifications and cell wall sensing receptor-like kinases are tightly embedded in a pathway regulating cell elongation. Furthermore, our study assigned a novel role to MKK2 as a regulator of primary root growth and a (potential) regulator of auxin biosynthesis and signalling, and suggests the importance of the MKK2 Thr31 phosphorylation site for growth regulation in the Arabidopsis root tip.


2020 ◽  
Author(s):  
Amanda Rosier ◽  
Pascale B. Beauregard ◽  
Harsh P. Bais

AbstractPlant growth promoting rhizobacteria (PGPR) have enormous potential for solving some of the myriad challenges facing our global agricultural system. Intense research efforts are rapidly moving the field forward and illuminating the wide diversity of bacteria and their plant beneficial activities. In the development of better crop solutions using these PGPR, producers are including multiple different species of PGPR in their formulations in a ‘consortia’ approach. While the intention is to emulate more natural rhizomicrobiome systems, the aspect of bacterial interactions has not been properly regarded. By using a tri-trophic model of Medicago truncatula A17 Jemalong, its nitrogen (N)-fixing symbiont Sinorhizobium meliloti Rm8530 and the PGPR Bacillus subtilis UD1022, we demonstrate indirect influences between the bacteria affecting their plant growth promoting activities. Co-cultures of UD1022 with Rm8530 significantly reduced Rm8530 biofilm formation and downregulated quorum sensing (QS) genes responsible for symbiotically active biofilm production. This work also identifies the presence and activity of a quorum quenching lactonase in UD1022 and proposes this as the mechanism for non-synergistic activity of this model ‘consortium’. These interspecies interactions may be common in the rhizosphere and are critical to understand as we seek to develop new sustainable solutions in agriculture.


Author(s):  
Celeste Molina‐Favero ◽  
Cecilia Mónica Creus ◽  
María Luciana Lanteri ◽  
Natalia Correa‐Aragunde ◽  
María Cristina Lombardo ◽  
...  

2015 ◽  
Vol 28 (2) ◽  
pp. 134-142 ◽  
Author(s):  
M. A. Morel ◽  
C. Cagide ◽  
M. A. Minteguiaga ◽  
M. S. Dardanelli ◽  
S. Castro-Sowinski

Delftia sp. strain JD2 is a plant-growth-promoting bacterium that enhances legume nodulation and growth, acting as nodule-assisting bacterium during the co-inoculation of plants with rhizobial strains. In this work, we evaluate how the co-inoculation of alfalfa with Sinorhizobium meliloti U143 and JD2 increases plant yield under greenhouse conditions and we analyze the pattern of secreted bioactive compounds which may be involved in the microbe-plant communication. The chemical composition of extracellular cultures (EC) produced in hydroponic conditions (collected 4, 7, and 14 days after bacterial treatment) were characterized using different chromatographic and elucidation techniques. In addition, we assessed the effect that plant irrigation with cell-free EC, produced during co-inoculation experiments, would have on plant yield. Results showed increased alfalfa shoot and root matter, suggesting that U143-JD2 co-inoculation might be a beneficial agricultural practice. The pattern of secreted secondary metabolites among treatments showed important differences. Qualitative and quantitative changes in phenolic compounds (including flavonoids), organic acids, and volatile compounds were detected during the early microbe-plant interaction, suggesting that the production of some molecules positively affects the microbe-plant association. Finally, the irrigation of co-inoculated plants with cell-free EC under greenhouse conditions increased plant yield over agronomic expectations. This effect might be attributed to the bioactive secondary metabolites incorporated during the irrigation.


1986 ◽  
Vol 50 (12) ◽  
pp. 3083-3086
Author(s):  
Junichi Ueda ◽  
Takao Yokota ◽  
Nobutaka Takahashi ◽  
Michio Yoshida ◽  
Jiro Kato
Keyword(s):  

1997 ◽  
Vol 15 (4) ◽  
pp. 197-199
Author(s):  
Matt Kelting ◽  
J. Roger Harris ◽  
Jody Fanelli ◽  
Bonnie Appleton ◽  
Alex Niemiera

Abstract Humate-based products have been aggressively marketed to nursery producers as biostimulants which increase plant growth. Reports of their effect on container-grown trees in organic substrate are few. We tested four distinct types of biostimulants on top and root growth of Turkish hazelnut (Corylus colurna L.), grown in containers with pine-bark substrate. Treatments included: 1) an untreated control; 2) humate, applied as a dry topdress; 3) humate, formulated as a wettable powder and applied as a substrate drench; 4) humate, applied as a pre-plant root soak; 5) humate, to which various purported root growth-promoting additives had been added, also applied as a root soak. All treatments were tested within low, medium, and high fertilizer application regimes. No treatment increased top growth compared to untreated trees, and the root-soak treatments had the lowest top growth. At high and low fertilizer application rates, root length was similar for all treatments except for root-soak treatments, which had lower root lengths. At the medium fertilizer rate, root length was greatest for trees treated with granular humate applied as a dry topdressing and lowest for trees treated with root soaks.


Sign in / Sign up

Export Citation Format

Share Document