Supplementation of oleic acid, stearic acid, palmitic acid and β-hydroxybutyrate increase H3K9me3 in endometrial epithelial cells of cattle cultured in vitro

2021 ◽  
Vol 233 ◽  
pp. 106851
Author(s):  
Juliana G. Ferst ◽  
Werner G. Glanzner ◽  
Karina Gutierrez ◽  
Mariana P. de Macedo ◽  
Rogério Ferreira ◽  
...  
1980 ◽  
Vol 191 (2) ◽  
pp. 637-643 ◽  
Author(s):  
William W. Christie ◽  
Margaret L. Hunter

The effects of inclusion of different fatty acids in the medium on the rate of esterification of palmitic acid and its stereospecific distribution among the three positions of the triacyl-sn-glycerols by preparations of rat adipocytes in vitro have been determined. Myristic acid, stearic acid, oleic acid and linoleic acid were used as diluents and the concentration of the combined unesterified fatty acids in the medium was held constant; only the proportion of palmitic acid was varied. The amount of palmitic acid esterified was always linearly related to its relative concentration in the medium and was not significantly affected by the nature of the diluent fatty acid chosen. Constant relative proportions were recovered in triacylglycerols and in intermediates in each instance. The amount of palmitic acid esterified to each of the positions of the triacyl-sn-glycerols was linearly dependent on the relative proportion in the medium but the nature of the relationship was markedly influenced by which fatty acid was present. When stearic acid was present, simple relationships were found over the whole range tested. When either myristic acid, oleic acid or linoleic acid was present, abrupt changes in the manner of esterification of palmitic acid were observed in position sn-1 when the relative concentrations of palmitic acid and the diluent reached critical values, which differed with each fatty acid. In position sn-2 when oleic acid or linoleic acid was present, a similar change was observed, and in position sn-3 it was obtained with myristic acid as diluent. The results are discussed in terms of changes in the relative affinities of the acyltransferases for palmitic acid. Palmitic acid was esterified into various molecular species in proportions that indicated acylation with non-correlative specificity at higher relative concentrations but not at lower.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryo Yokomizo ◽  
Yukiko Fujiki ◽  
Harue Kishigami ◽  
Hiroshi Kishi ◽  
Tohru Kiyono ◽  
...  

Abstract Background Thin endometrium adversely affects reproductive success rates with fertility treatment. Autologous transplantation of exogenously prepared endometrium can be a promising therapeutic option for thin endometrium; however, endometrial epithelial cells have limited expansion potential, which needs to be overcome in order to make regenerative medicine a therapeutic strategy for refractory thin endometrium. Here, we aimed to perform long-term culture of endometrial epithelial cells in vitro. Methods We prepared primary human endometrial epithelial cells and endometrial stromal cells and investigated whether endometrial stromal cells and human embryonic stem cell-derived feeder cells could support proliferation of endometrial epithelial cells. We also investigated whether three-dimensional culture can be achieved using thawed endometrial epithelial cells and endometrial stromal cells. Results Co-cultivation with the feeder cells dramatically increased the proliferation rate of the endometrial epithelial cells. We serially passaged the endometrial epithelial cells on mouse embryonic fibroblasts up to passage 6 for 4 months. Among the human-derived feeder cells, endometrial stromal cells exhibited the best feeder activity for proliferation of the endometrial epithelial cells. We continued to propagate the endometrial epithelial cells on endometrial stromal cells up to passage 5 for 81 days. Furthermore, endometrial epithelium and stroma, after the freeze-thaw procedure and sequential culture, were able to establish an endometrial three-dimensional model. Conclusions We herein established a model of in vitro cultured endometrium as a potential therapeutic option for refractory thin endometrium. The three-dimensional culture model with endometrial epithelial and stromal cell orchestration via cytokines, membrane-bound molecules, extracellular matrices, and gap junction will provide a new framework for exploring the mechanisms underlying the phenomenon of implantation. Additionally, modified embryo culture, so-called “in vitro implantation”, will be possible therapeutic approaches in fertility treatment.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 162
Author(s):  
Enrique Gomez ◽  
Nuria Canela ◽  
Pol Herrero ◽  
Adrià Cereto ◽  
Isabel Gimeno ◽  
...  

This work describes the use of mass spectrometry-based metabolomics as a non-invasive approach to accurately predict birth prior to embryo transfer (ET) starting from embryo culture media and plasma recipient. Metabolomics was used here as a predictive platform. Day-6 in vitro produced embryos developed singly in modified synthetic oviduct fluid culture medium (CM) drops for 24 h were vitrified as Day-7 blastocysts and transferred to recipients. Day-0 and Day-7 recipient plasma (N = 36 × 2) and CM (N = 36) were analyzed by gas chromatography coupled to the quadrupole time of flight mass spectrometry (GC-qTOF). Metabolites quantified in CM and plasma were analyzed as a function to predict pregnancy at Day-40, Day-62, and birth (univariate and multivariate statistics). Subsequently, a Boolean matrix (F1 score) was constructed with metabolite pairs (one from the embryo, and one from the recipient) to combine the predictive power of embryos and recipients. Validation was performed in independent cohorts of ETs analyzed. Embryos that did not reach birth released more stearic acid, capric acid, palmitic acid, and glyceryl monostearate in CM (i.e., (p < 0.05, FDR < 0.05, Receiver Operator Characteristic—area under curve (ROC-AUC)> 0.669). Within Holstein recipients, hydrocinnamic acid, alanine, and lysine predicted birth (ROC-AUC > 0.778). Asturiana de los Valles recipients that reached birth showed lower concentrations of 6-methyl-5-hepten-2-one, stearic acid, palmitic acid, and hippuric acid (ROC-AUC > 0.832). Embryonal capric acid and glyceryl-monostearate formed F1 scores generally >0.900, with metabolites found both to differ (e.g., hippuric acid, hydrocinnamic acid) or not (e.g., heptadecanoic acid, citric acid) with pregnancy in plasmas, as hypothesized. Efficient lipid metabolism in the embryo and the recipient can allow pregnancy to proceed. Changes in phenolics from plasma suggest that microbiota and liver metabolism influence the pregnancy establishment in cattle.


2016 ◽  
Vol 62 (3) ◽  
pp. 271-278 ◽  
Author(s):  
Md. Rashedul ISLAM ◽  
Kazuki YAMAGAMI ◽  
Yuka YOSHII ◽  
Nobuhiko YAMAUCHI

2005 ◽  
Vol 34 (2) ◽  
pp. 517-534 ◽  
Author(s):  
S Hombach-Klonisch ◽  
A Kehlen ◽  
P A Fowler ◽  
B Huppertz ◽  
J F Jugert ◽  
...  

Information on the regulation of steroid hormone receptors and their distinct functions within the human endometrial epithelium is largely unavailable. We have immortalized human primary endometrial epithelial cells (EECs) isolated from a normal proliferative phase endometrium by stably transfecting the catalytic subunit (hTERT) of the human telomerase complex and cultured these hTERT-EECs now for over 350 population doublings. Active hTERT was detected in hTERT-EECs employing the telomerase repeat amplification assay protocol. hTERT-EECs revealed a polarized, non-invasive epithelial phenotype with apical microvilli and production of a basal lamina when grown on a three-dimensional collagen–fibroblast lattice. Employing atomic force microscopy, living hTERT-EECs were shown to produce extracellular matrix (ECM) components and ECM secretion was modified by estrogen and progesterone (P4). hTERT-EECs expressed inducible and functional endogenous estrogen receptor-alpha (ER-alpha) as demonstrated by estrogen response element reporter assays and induction of P4 receptor (PR). P4 treatment down-regulated PR expression, induced MUC-1 gene activity and resulted in increased ER-beta transcriptional activity. Gene activities of cytokines and their receptors interleukin (IL)-6, leukemia inhibitory factor (LIF), IL-11 and IL-6 receptor (IL6-R), LIF receptor and gp130 relevant to implantation revealed a 17 beta-estradiol (E2)-mediated up-regulation of IL-6 and an E2- and P4-mediated up-regulation of IL6-R in hTERT-EECs. Thus, hTERT-EECs may be regarded as a novel in vitro model to investigate the role of human EECs in steroid hormone-dependent normal physiology and pathologies, including implantation failure, endometriosis and endometrial cancer.


1999 ◽  
Vol 81 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Amanda E. Jones ◽  
Michael Stolinski ◽  
Ruth D. Smith ◽  
Jane L. Murphy ◽  
Stephen A. Wootton

The gastrointestinal handling and metabolic disposal of [1-13C]palmitic acid, [1-13C]stearic acid and [1-13C]oleic acid administered within a lipid–casein–glucose–sucrose emulsion were examined in normal healthy women by determining both the amount and nature of the13C label in stool and label excreted on breath as13CO2. The greatest excretion of13C label in stool was in the stearic acid trial (9.2 % of administered dose) whilst comparatively little label was observed in stool in either the palmitic acid (1.2 % of administered dose) or oleic acid (1.9 % of administered dose) trials. In both the palmitic acid and oleic acid trials, all of the label in stool was identified as being present in the form in which it was administered (i.e. [13C]palmitic acid in the palmitic acid trial and [13C]oleic acid in the oleic acid trial). In contrast, only 87 % of the label in the stool in the stearic acid trial was identified as [13C]stearic acid, the remainder was identified as [13C]palmitic acid which may reflect chain shortening of [1-13C]stearic acid within the gastrointestinal tract. Small, but statistically significant, differences were observed in the time course of recovery of13C label on breath over the initial 9 h of the study period (oleic acid = palmitic acid > stearic acid). However, when calculated over the 24 h study period, the recovery of the label as13CO2was similar in all three trials (approximately 25 % of absorbed dose). These results support the view that chain length and degree of unsaturation may influence the gastrointestinal handling and immediate metabolic disposal of these fatty acids even when presented within an emulsion.


2020 ◽  
Author(s):  
Jie Yu ◽  
Wenwen Zhang ◽  
Jiayue Huang ◽  
Yating Gou ◽  
Congcong Sun ◽  
...  

Abstract Background: Human amniotic mesenchymal stem cells(hAMSCs) can repair and improve the damaged endometrium which its aplastic disorder is the main reason for intrauterine adhesions(IUAs).Methods: We conducted in vivo and in vitro experiments. In vivo experiments: 45 female Sprague-Dawley(SD) rats were involved and randomized equally into Sham group, IUA group, Estradiol(E2) group, hAMSCs group, and E2 + hAMSCs group. The effect of hAMSCs and E2 only or combined was evaluated by Hematoxylin-eosin(HE) and Masson staining. The expression of epithelial markers and key proteins of Notch signaling pathway by Immunohistochemistry. In vitro experiments: Firstly, the hAMSCs cells were taken and divided into control group and induced group in which hAMSCs were differentiated into endometrial epithelial cells in induced microenvironment, and extracted their RNA respectively. The expression of epithelial markers and Notch1 messenger RNA (mRNA) was detected by Real-time quantitative polymerase chain reaction(qRT-PCR). and the changes in expression position of Notch intracellular domain(NICD) and expression amount of target gene, hairy enhancer of split 1(Hes1) were detected by Immunofluorescence. Then, Activated and inhibited the Notch signaling pathway while induction, and detected mRNA expression of hAMSCs epithelial markers by quantitative real-time polymerase chainreaction (qRT-PCR) respectively and detected hAMSCs cell cycle by flow cytometric. Results:This study showed that hAMSCs alone or combined with E2 could promote endometrial repair, and Notch signaling pathway a great role in it. And otherwise, the activation or habitation of Notch signaling pathway determines whether hAMSCs could differentiate into endometrial epithelial cells or not.Conclusion: we concluded that activate the Notch signaling pathway promote the differentiation of hAMSCs into endometrial epithelial cells, and further treat IUAs.


Author(s):  
Vilcacundo E ◽  
Alvarez M ◽  
Silva M ◽  
Carpio C ◽  
Morales D ◽  
...  

 Objective: The aim of this study was to determine the fatty acids composition in a tocte seeds oil (Juglans neotropica Diels) sample cultivated in Ecuador.Methods: Tocte oil was obtained from tocte seeds using the cold pressing method. Fatty acids analysis was carried out using the gas chromatography method with a mass selective detector (GC/MSD) and using the database Library NIST14.L to identify the compounds.Results: Methyl esters fatty acids were identified from tocte (J. neotropica Diels) walnut using the GC–MS analytical method. The total lipid content of tocte walnuts seeds of plants cultivated in Ecuador was of 49.01% of the total lipid content on fresh weight. Fatty acids were analyzed as methyl esters on a capillary column DB-WAX 122-7062 with a good separation of palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid. The structure of methyl esters fatty acids was determined using the GC–MS. Tocte walnut presents 5.05% of palmitic acid, 2.26% of stearic acid, 19.50% of oleic acid, 65.81% of linoleic acid, and 2.79% linolenic acid of the total content of fatty acids in tocte oil. Fatty acids content reported in this study were similar to the data reported for other walnuts seeds.Conclusions: Tocte seeds are a good source of monounsaturated and polyunsaturated fatty acids. Tocte oil content oleic acid and with a good content of ɷ6 α-linoleic and ɷ3 α-linolenic. Tocte walnut can help reduce risk cardiovascular diseases in Ecuador for their good composition of fatty acids.


Sign in / Sign up

Export Citation Format

Share Document