Comparison of early and recent influenza A(H1N1)pdm09 isolates harboring or not the H275Y neuraminidase mutation, in vitro and in animal models

2018 ◽  
Vol 159 ◽  
pp. 26-34
Author(s):  
Yacine Abed ◽  
Véronique Tu ◽  
Julie Carbonneau ◽  
Liva Checkmahomed ◽  
Marie-Christine Venable ◽  
...  
2019 ◽  
Vol 295 (6) ◽  
pp. 1704-1715 ◽  
Author(s):  
Mari Numata ◽  
James R. Mitchell ◽  
Jennifer L. Tipper ◽  
Jeffrey D. Brand ◽  
John E. Trombley ◽  
...  

The influenza A (H1N1)pdm09 outbreak in 2009 exemplified the problems accompanying the emergence of novel influenza A virus (IAV) strains and their unanticipated virulence in populations with no pre-existing immunity. Neuraminidase inhibitors (NAIs) are currently the drugs of choice for intervention against IAV outbreaks, but there are concerns that NAI-resistant viruses can transmit to high-risk populations. These issues highlight the need for new approaches that address the annual influenza burden. In this study, we examined whether palmitoyl-oleoyl-phosphatidylglycerol (POPG) and phosphatidylinositol (PI) effectively antagonize (H1N1)pdm09 infection. POPG and PI markedly suppressed cytopathic effects and attenuated viral gene expression in (H1N1)pdm09-infected Madin-Darby canine kidney cells. POPG and PI bound to (H1N1)pdm09 with high affinity and disrupted viral spread from infected to noninfected cells in tissue culture and also reduced (H1N1)pdm09 propagation by a factor of 102 after viral infection was established in vitro. In a mouse infection model of (H1N1)pdm09, POPG and PI significantly reduced lung inflammation and viral burden. Of note, when mice were challenged with a typically lethal dose of 1000 plaque-forming units of (H1N1)pdm09, survival after 10 days was 100% (14 of 14 mice) with the POPG treatment compared with 0% (0 of 14 mice) without this treatment. POPG also significantly reduced inflammatory infiltrates and the viral burden induced by (H1N1)pdm09 infection in a ferret model. These findings indicate that anionic phospholipids potently and efficiently disrupt influenza infections in animal models.


2016 ◽  
Vol 132 ◽  
pp. 6-12 ◽  
Author(s):  
Yacine Abed ◽  
Xavier Bouhy ◽  
Arnaud G. L’Huillier ◽  
Chantal Rhéaume ◽  
Andrés Pizzorno ◽  
...  

Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 426
Author(s):  
Yana-Ya Kostyro ◽  
Anastasiya Soldatenko ◽  
Alexey Levchuk

The A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences has developed an original active pharmaceutical ingredient based on an oxidized cyclodextrin oligosaccharide, which is a bisulfite derivative. Conducted pharmacological studies proved its antiviral activity in vitro and in vivo experiments against the influenza A (H1N1) virus. The aim of this work was to optimize the technology of obtaining the active pharmaceutical ingredient based on the bisulfite derivative of oxidized cyclodextrin to increase the efficiency and safety of the process. For this, a scaled method of oligosaccharide oxidation was tested on pilot plants in accordance with the requirements of green chemistry. As a result, the reaction time was reduced from three to five days (laboratory conditions) to 1.5 h, and the safety and environmental friendliness of process was ensured. The use of cross-flow filtration and the method of freeze-drying eliminated 96% of ethyl alcohol, reduced the laboriousness and energy consumption of the technological operations for purification and isolation of the final product, and also increased the productivity of the whole process (output increased to 98%). The results are confirmed by data obtained by physicochemical methods.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1139
Author(s):  
Liva Checkmahomed ◽  
Blandine Padey ◽  
Andrés Pizzorno ◽  
Olivier Terrier ◽  
Manuel Rosa-Calatrava ◽  
...  

Two antiviral classes, the neuraminidase inhibitors (NAIs) and polymerase inhibitors (baloxavir marboxil and favipiravir) can be used to prevent and treat influenza infections during seasonal epidemics and pandemics. However, prolonged treatment may lead to the emergence of drug resistance. Therapeutic combinations constitute an alternative to prevent resistance and reduce antiviral doses. Therefore, we evaluated in vitro combinations of baloxavir acid (BXA) and other approved drugs against influenza A(H1N1)pdm09 and A(H3N2) subtypes. The determination of an effective concentration inhibiting virus cytopathic effects by 50% (EC50) for each drug and combination indexes (CIs) were based on cell viability. CompuSyn software was used to determine synergism, additivity or antagonism between drugs. Combinations of BXA and NAIs or favipiravir had synergistic effects on cell viability against the two influenza A subtypes. Those effects were confirmed using a physiological and predictive ex vivo reconstructed human airway epithelium model. On the other hand, the combination of BXA and ribavirin showed mixed results. Overall, BXA stands as a good candidate for combination with several existing drugs, notably oseltamivir and favipiravir, to improve in vitro antiviral activity. These results should be considered for further animal and clinical evaluations.


2010 ◽  
Vol 15 (8) ◽  
pp. 1151-1159 ◽  
Author(s):  
Larisa V Gubareva ◽  
A Angelica Trujillo ◽  
Margaret Okomo-Adhiambo ◽  
Vasiliy P Mishin ◽  
Varough M Deyde ◽  
...  

2015 ◽  
Vol 59 (5) ◽  
pp. 2647-2653 ◽  
Author(s):  
Miguel Retamal ◽  
Yacine Abed ◽  
Chantal Rhéaume ◽  
Francesca Cappelletti ◽  
Nicola Clementi ◽  
...  

ABSTRACTPN-SIA28 is a human monoclonal antibody (Hu-MAb) targeting highly conserved epitopes within the stem portion of the influenza virus hemagglutinin (HA) (N. Clementi, et al, PLoS One 6:e28001, 2011,http://dx.doi.org/10.1371/journal.pone.0028001). Previousin vitrostudies demonstrated PN-SIA28 neutralizing activities against phylogenetically divergent influenza A subtypes. In this study, the protective activity of PN-SIA28 was evaluated in mice inoculated with lethal influenza A/WSN/33 (H1N1), A/Quebec/144147/09 (H1N1)pdm09, and A/Victoria/3/75 (H3N2) viruses. At 24 h postinoculation (p.i.), animals received PN-SIA28 intraperitoneally (1 or 10 mg/kg of body weight) or 10 mg/kg of unrelated Hu-MAb (mock). Body weight loss and mortality rate (MR) were recorded for 14 days postinfection (p.i.). Lung viral titers (LVT) were determined at day 5 p.i. In A/WSN/33 (H1N1)-infected groups, all untreated and mock-receiving mice died, whereas MRs of 87.5% and 25% were observed in mice that received PN-SIA28 1 and 10 mg/kg, respectively. In influenza A(H1N1) pdm09-infected groups, an MR of 75% was recorded for untreated and mock-treated groups, whereas the PN-SIA28 1-mg/kg and 10-mg/kg groups had rates of 62.5% and 0%, respectively. In A/Victoria/3/75 (H3N2)-infected animals, untreated and mock-treated animals had MRs of 37.5% and 25%, respectively, and no mortalities were recorded after PN-SIA28 treatments. Accordingly, PN-SIA28 treatments significantly reduced weight losses and resulted in a ≥1-log reduction in LVT compared to the control in all infection groups. This study confirms that antibodies targeting highly conserved epitopes in the influenza HA stem region, like PN-SIA28, not only neutralize influenza A viruses of clinically relevant subtypesin vitrobut also, more importantly, protect from a lethal influenza virus challengein vivo.


2010 ◽  
Vol 15 (5) ◽  
pp. 721-726 ◽  
Author(s):  
Michèle Ottmann ◽  
Maude Bouscambert Duchamp ◽  
Jean-Sébastien Casalegno ◽  
Emilie Frobert ◽  
Vincent Moulès ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document