scholarly journals Measurement of ambient vibration in empty buildings and relation to external noise

2022 ◽  
Vol 186 ◽  
pp. 108431
Author(s):  
David Caballol ◽  
Álvaro P. Raposo ◽  
Francisco Gil Carrillo ◽  
Mónica Morales-Segura
Author(s):  
Ralph Alan Dusseau

The results of a study funded by the U.S. Geological Survey as part of the National Earthquake Hazards Reduction Program are presented. The first objective of this study was the development of a database for all 211 highway bridges along I-55 in the New Madrid region of southeastern Missouri. Profiles for five key dimension parameters (which are stored in the database) were developed, and the results for concrete highway bridges are presented. The second objective was to perform field ambient vibration analyses on 25 typical highway bridge spans along the I-55 corridor to determine the fundamental vertical and lateral frequencies of the bridge spans measured. These 25 spans included six reinforced concrete slab spans and two reinforced concrete box-girder spans. The third objective was to use these bridge frequency results in conjunction with the dimension parameters stored in the database to develop empirical formulas for estimating bridge fundamental natural frequencies. These formulas were applied to all 211 Interstate highway bridges in southeastern Missouri. Profiles for both fundamental vertical and lateral frequencies were then developed, and the results for concrete highway bridges are presented.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Jun Ma ◽  
Shinji Nakata ◽  
Akihito Yoshida ◽  
Yukio Tamura

Full-scale tests on a one-story steel frame structure with a typical precast cladding system using ambient and free vibration methods are described in detail. The cladding system is primarily composed of ALC (Autoclaved Lightweight Concrete) external wall cladding panels, gypsum plasterboard interior linings, and window glazing systems. Ten test cases including the bare steel frame and the steel frame with addition of different parts of the precast cladding system are prepared for detailed investigations. The amplitude-dependent dynamic characteristics of the test cases including natural frequencies and damping ratios determined from the tests are presented. The effects of the ALC external wall cladding panels, the gypsum plasterboard interior linings, and the window glazing systems on the stiffness and structural damping of the steel frame are discussed in detail. The effect of the precast cladding systems on the amplitude dependency of the dynamic characteristics and the tendencies of the dynamic parameters with respect to the structural response amplitude are investigated over a wide range. Furthermore, results estimated from the ambient vibration method are compared with those from the free vibration tests to evaluate the feasibility of the ambient vibration method.


Machines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 67
Author(s):  
Laixi Zhang ◽  
Chenming Zhao ◽  
Feng Qian ◽  
Jaspreet Singh Dhupia ◽  
Mingliang Wu

Vibrations in the aircraft assembly building will affect the precision of the robotic drilling system. A variable stiffness and damping semiactive vibration control mechanism with quasi-zero stiffness characteristics is developed. The quasi-zero stiffness of the mechanism is realized by the parallel connection of four vertically arranged bearing springs and two symmetrical horizontally arranged negative stiffness elements. Firstly, the quasi-zero stiffness parameters of the mechanism at the static equilibrium position are obtained through analysis. Secondly, the harmonic balance method is used to deal with the differential equations of motion. The effects of every parameter on the displacement transmissibility are analyzed, and the variable parameter control strategies are proposed. Finally, the system responses of the passive and semiactive vibration isolation mechanisms to the segmental variable frequency excitations are compared through virtual prototype experiments. The results show that the frequency range of vibration isolation is widened, and the stability of the vibration control system is effectively improved without resonance through the semiactive vibration control method. It is of innovative significance for ambient vibration control in robotic drilling systems.


2021 ◽  
Vol 11 (6) ◽  
pp. 761
Author(s):  
Gert Dehnen ◽  
Marcel S. Kehl ◽  
Alana Darcher ◽  
Tamara T. Müller ◽  
Jakob H. Macke ◽  
...  

Single-unit recordings in the brain of behaving human subjects provide a unique opportunity to advance our understanding of neural mechanisms of cognition. These recordings are exclusively performed in medical centers during diagnostic or therapeutic procedures. The presence of medical instruments along with other aspects of the hospital environment limit the control of electrical noise compared to animal laboratory environments. Here, we highlight the problem of an increased occurrence of simultaneous spike events on different recording channels in human single-unit recordings. Most of these simultaneous events were detected in clusters previously labeled as artifacts and showed similar waveforms. These events may result from common external noise sources or from different micro-electrodes recording activity from the same neuron. To address the problem of duplicate recorded events, we introduce an open-source algorithm to identify these artificial spike events based on their synchronicity and waveform similarity. Applying our method to a comprehensive dataset of human single-unit recordings, we demonstrate that our algorithm can substantially increase the data quality of these recordings. Given our findings, we argue that future studies of single-unit activity recorded under noisy conditions should employ algorithms of this kind to improve data quality.


2021 ◽  
Vol 13 (5) ◽  
pp. 2865 ◽  
Author(s):  
Sungryong Bae ◽  
Pilkee Kim

In this study, optimization of the external load resistance of a piezoelectric bistable energy harvester was performed for primary harmonic (period-1T) and subharmonic (period-3T) interwell motions. The analytical expression of the optimal load resistance was derived, based on the spectral analyses of the interwell motions, and evaluated. The analytical results are in excellent agreement with the numerical ones. A parametric study shows that the optimal load resistance depended on the forcing frequency, but not the intensity of the ambient vibration. Additionally, it was found that the optimal resistance for the period-3T interwell motion tended to be approximately three times larger than that for the period-1T interwell motion, which means that the optimal resistance was directly affected by the oscillation frequency (or oscillation period) of the motion rather than the forcing frequency. For broadband energy harvesting applications, the subharmonic interwell motion is also useful, in addition to the primary harmonic interwell motion. In designing such piezoelectric bistable energy harvesters, the frequency dependency of the optimal load resistance should be considered properly depending on ambient vibrations.


Author(s):  
Virgilio J Caetano ◽  
Marcelo A Savi

Energy harvesting from ambient vibration through piezoelectric devices has received a lot of attention in recent years from both academia and industry. One of the main challenges is to develop devices capable of adapting to diverse sources of environmental excitation, being able to efficiently operate over a broadband frequency spectrum. This work proposes a novel multimodal design of a piezoelectric energy harvesting system to harness energy from a wideband ambient vibration source. Circular-shaped and pizza-shaped designs are employed as candidates for the device, comparing their performance with classical beam-shaped devices. Finite element analysis is employed to model system dynamics using ANSYS Workbench. An optimization procedure is applied to the system aiming to seek a configuration that can extract energy from a broader frequency spectrum and maximize its output power. A comparative analysis with conventional energy harvesting systems is performed. Numerical simulations are carried out to investigate the harvester performances under harmonic and random excitations. Results show that the proposed multimodal harvester has potential to harness energy from broadband ambient vibration sources presenting performance advantages in comparison to conventional single-mode energy harvesters.


Sign in / Sign up

Export Citation Format

Share Document