Weak signal enhancement for machinery fault diagnosis based on a novel adaptive multi-parameter unsaturated stochastic resonance

2022 ◽  
Vol 189 ◽  
pp. 108609
Author(s):  
Peiming Shi ◽  
Mengdi Li ◽  
Wenyue Zhang ◽  
Dongying Han
2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Siliang Lu ◽  
Qingbo He ◽  
Haibin Zhang ◽  
Fanrang Kong

The fault-induced impulses with uneven amplitudes and durations are always accompanied with amplitude modulation and (or) frequency modulation, which leads to that the acquired vibration/acoustic signals for rotating machine fault diagnosis always present nonlinear and nonstationary properties. Such an effect affects precise fault detection, especially when the impulses are submerged in heavy background noise. To address this issue, a nonstationary weak signal detection strategy is proposed based on a time-delayed feedback stochastic resonance (TFSR) model. The TFSR is a long-memory system that can utilize historical information to enhance the signal periodicity in the feedback process, and such an effect is beneficial to periodic signal detection. By selecting the proper parameters including time delay, feedback intensity, and calculation step in the regime of TFSR, the weak signal, the noise, and the potential can be matched with each other to an extreme, and consequently a regular output waveform with low-noise interference can be obtained with the assistant of the distinct band-pass filtering effect. Simulation study and experimental verification are performed to evaluate the effectiveness and superiority of the proposed TFSR method in comparison with a traditional stochastic resonance (SR) method. The proposed method is suitable for detecting signals with strong nonlinear and nonstationary properties and (or) being subjected to heavy multiscale noise interference.


2021 ◽  
Vol 11 (23) ◽  
pp. 11480
Author(s):  
Hongjiang Cui ◽  
Ying Guan ◽  
Wu Deng

Aiming at the problems of poor decomposition quality and the extraction effect of a weak signal with strong noise by empirical mode decomposition (EMD), a novel fault diagnosis method based on cascaded adaptive second-order tristable stochastic resonance (CASTSR) and EMD is proposed in this paper. In the proposed method, low-frequency interference components are filtered by using high-pass filtering, and the restriction conditions of stochastic resonance theory are solved by using an ordinary variable-scale method. Then, a chaotic ant colony optimization algorithm with a global optimization ability is employed to adaptively adjust the parameters of the second-order tristable stochastic resonance system to obtain the optimal stochastic resonance, and noise reduction pretreatment technology based on CASTSR is developed to enhance the weak signal characteristics of low frequency. Next, the EMD is employed to decompose the denoising signal and extract the characteristic frequency from the intrinsic mode function (IMF), so as to realize the fault diagnosis of rolling bearings. Finally, the numerical simulation signal and actual bearing fault data are selected to prove the validity of the proposed method. The experiment results indicate that the proposed fault diagnosis method can enhance the decomposition quality of the EMD, effectively extract features of weak signals, and improve the accuracy of fault diagnosis. Therefore, the proposed fault diagnosis method is an effective fault diagnosis method for rotating machinery.


Sign in / Sign up

Export Citation Format

Share Document