Machine learning for early stage building energy prediction: Increment and enrichment

2021 ◽  
Vol 304 ◽  
pp. 117787
Author(s):  
Manav Mahan Singh ◽  
Sundaravelpandian Singaravel ◽  
Philipp Geyer
2019 ◽  
Vol 1 (3) ◽  
pp. 974-993 ◽  
Author(s):  
Clayton Miller

Prediction is a common machine learning (ML) technique used on building energy consumption data. This process is valuable for anomaly detection, load profile-based building control and measurement and verification procedures. Hundreds of building energy prediction techniques have been developed over the last three decades, yet there is still no consensus on which techniques are the most effective for various building types. In addition, many of the techniques developed are not publicly available to the general research community. This paper outlines a library of open-source regression techniques from the Scikit-Learn Python library and describes the process of applying them to open hourly electrical meter data from 482 non-residential buildings from the Building Data Genome Project. The results illustrate that there are several techniques, notably decision tree-based models, that perform well on two-thirds of the total cohort of buildings. However, over one-third of the buildings, specifically primary schools, performed poorly. This example implementation shows that there is no one size-fits-all modeling solution and that various types of temporal behavior are difficult to capture using machine learning. An analysis of the generalizability of the models tested motivates the need for the application of future techniques to a board range of building types and behaviors. The importance of this type of scalability analysis is discussed in the context of the growth of energy meter and other Internet-of-Things (IoT) data streams in the built environment. This framework is designed to be an example baseline implementation for other building energy data prediction methods as applied to a larger population of buildings. For reproducibility, the entire code base and data sets are found on Github.


2019 ◽  
Vol 10 (1) ◽  
pp. 1-10
Author(s):  
Priyan Rai ◽  
Dr. Nabil Nassif ◽  
Kevin Eaton ◽  
Alexander Rodrigues

Author(s):  
William Mounter ◽  
Huda Dawood ◽  
Nashwan Dawood

AbstractAdvances in metering technologies and machine learning methods provide both opportunities and challenges for predicting building energy usage in the both the short and long term. However, there are minimal studies on comparing machine learning techniques in predicting building energy usage on their rolling horizon, compared with comparisons based upon a singular forecast range. With the majority of forecasts ranges being within the range of one week, due to the significant increases in error beyond short term building energy prediction. The aim of this paper is to investigate how the accuracy of building energy predictions can be improved for long term predictions, in part of a larger study into which machine learning techniques predict more accuracy within different forecast ranges. In this case study the ‘Clarendon building’ of Teesside University was selected for use in using it’s BMS data (Building Management System) to predict the building’s overall energy usage with Support Vector Regression. Examining how altering what data is used to train the models, impacts their overall accuracy. Such as by segmenting the model by building modes (Active and dormant), or by days of the week (Weekdays and weekends). Of which it was observed that modelling building weekday and weekend energy usage, lead to a reduction of 11% MAPE on average compared with unsegmented predictions.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 433 ◽  
Author(s):  
Seokho Kim ◽  
Yujin Sung ◽  
Yoondong Sung ◽  
Donghyun Seo

To improve the energy prediction performance of a building energy model, the occupancy status information is very important. This is more important in real buildings, rather than under construction buildings, because actual building occupancy can significantly influence its energy consumption. In this study, a machine learning based framework for a consecutive occupancy estimation is proposed by utilizing internet of things data, such as indoor temperature and luminance, CO2 density, electricity consumption of lighting, HVAC (heating, ventilation, and air conditioning), electric appliances, etc. Three machine learning based occupancy estimation algorithms (decision tree, support vector machine, artificial neural networks) are selected and evaluated in terms of the performance of estimating the occupancy status for each season. The selection process of the input variables that have crucial impact on the algorithms’ performance are described in detail. Finally, an occupancy estimation framework that can repeat model training and estimation consecutively in a situation when time-series data are continuously provided over the entire measurement period is suggested. In addition, the performance of the framework is evaluated to identify how it improves the energy prediction performance of the building energy model compared to conventional energy modeling practices. The suggested framework is distinguished from similar previous studies in two ways: 1) The proposed framework reveals that input variables for the occupancy estimation model can be occasionally changed by an occupant response to certain times and seasons, and 2) the framework incorporates time-series indirect occupancy sensing data and classification algorithms to consecutively provide occupancy information for the energy modeling effort.


2019 ◽  
Author(s):  
Siddhartha Laghuvarapu ◽  
Yashaswi Pathak ◽  
U. Deva Priyakumar

Recent advances in artificial intelligence along with development of large datasets of energies calculated using quantum mechanical (QM)/density functional theory (DFT) methods have enabled prediction of accurate molecular energies at reasonably low computational cost. However, machine learning models that have been reported so far requires the atomic positions obtained from geometry optimizations using high level QM/DFT methods as input in order to predict the energies, and do not allow for geometry optimization. In this paper, a transferable and molecule-size independent machine learning model (BAND NN) based on a chemically intuitive representation inspired by molecular mechanics force fields is presented. The model predicts the atomization energies of equilibrium and non-equilibrium structures as sum of energy contributions from bonds (B), angles (A), nonbonds (N) and dihedrals (D) at remarkable accuracy. The robustness of the proposed model is further validated by calculations that span over the conformational, configurational and reaction space. The transferability of this model on systems larger than the ones in the dataset is demonstrated by performing calculations on select large molecules. Importantly, employing the BAND NN model, it is possible to perform geometry optimizations starting from non-equilibrium structures along with predicting their energies.


2018 ◽  
Vol 1 (1) ◽  
pp. 236-247
Author(s):  
Divya Srivastava ◽  
Rajitha B. ◽  
Suneeta Agarwal

Diseases in leaves can cause the significant reduction in both quality and quantity of agricultural production. If early and accurate detection of disease/diseases in leaves can be automated, then the proper remedy can be taken timely. A simple and computationally efficient approach is presented in this paper for disease/diseases detection on leaves. Only detecting the disease is not beneficial without knowing the stage of disease thus the paper also determine the stage of disease/diseases by quantizing the affected of the leaves by using digital image processing and machine learning. Though there exists a variety of diseases on leaves, but the bacterial and fungal spots (Early Scorch, Late Scorch, and Leaf Spot) are the most prominent diseases found on leaves. Keeping this in mind the paper deals with the detection of Bacterial Blight and Fungal Spot both at an early stage (Early Scorch) and late stage (Late Scorch) on the variety of leaves. The proposed approach is divided into two phases, in the first phase, it identifies one or more disease/diseases existing on leaves. In the second phase, amount of area affected by the disease/diseases is calculated. The experimental results obtained showed 97% accuracy using the proposed approach.


2021 ◽  
Vol 13 (4) ◽  
pp. 1595
Author(s):  
Valeria Todeschi ◽  
Roberto Boghetti ◽  
Jérôme H. Kämpf ◽  
Guglielmina Mutani

Building energy-use models and tools can simulate and represent the distribution of energy consumption of buildings located in an urban area. The aim of these models is to simulate the energy performance of buildings at multiple temporal and spatial scales, taking into account both the building shape and the surrounding urban context. This paper investigates existing models by simulating the hourly space heating consumption of residential buildings in an urban environment. Existing bottom-up urban-energy models were applied to the city of Fribourg in order to evaluate the accuracy and flexibility of energy simulations. Two common energy-use models—a machine learning model and a GIS-based engineering model—were compared and evaluated against anonymized monitoring data. The study shows that the simulations were quite precise with an annual mean absolute percentage error of 12.8 and 19.3% for the machine learning and the GIS-based engineering model, respectively, on residential buildings built in different periods of construction. Moreover, a sensitivity analysis using the Morris method was carried out on the GIS-based engineering model in order to assess the impact of input variables on space heating consumption and to identify possible optimization opportunities of the existing model.


Sign in / Sign up

Export Citation Format

Share Document