The Relationship Between Movement Kinematics and Muscle Activity in Seated Versus Walking Tests of Upper Limb Associated Reactions

2021 ◽  
Vol 102 (10) ◽  
pp. e46
Author(s):  
Michelle Kahn ◽  
Gavin Williams ◽  
Benjamin Mentiplay ◽  
Kelly Bower ◽  
John Olver ◽  
...  
1996 ◽  
Vol 75 (4) ◽  
pp. 1472-1482 ◽  
Author(s):  
O. Kiehn ◽  
O. Kjaerulff

1. Rhythmic activity was induced with either serotonin (5-HT; 10-100 microM) or dopamine (0.1-1.0 mM), in the in vitro spinal cord preparation of neonatal rats, with one intact hindlimb attached. Patterns of activity were investigated with multiple EMG recordings and the spatiotemporal characteristics of 5-HT- and dopamine-induced activity compared. 2. Dopamine-induced rhythmic activity was slow (cycle duration: 2.2-70.1 s) and irregular, whereas rhythmic activity induced by 5-HT was fast (cycle duration: 1.3-5.1 s) and regular. 3. During 5-HT- and dopamine-induced rhythmic activity, the timing of muscular activity was similar for hip flexors and hip adductors, for semimembranosus (hip extensor), and for muscles controlling the ankle and the foot. 4. In contrast, notable differences in the phase in the pattern induced by 5-HT compared with that induced by dopamine were found in the biceps femoris, semitendinosus, and quadriceps muscles. Biceps femoris and semitendinosus (functional hip extensors and knee flexors) were always extensor-like during 5-HT-induced activity, whereas in dopamine, these muscles displayed flexor-like bursts and double bursts as well as extensor-like bursts. Lack of EMG activity in biceps femoris and semitendinosus was encountered also in dopamine. In rectus femoris, vastus lateralis, and vastus medialis (main function: knee extension), the activity was dominated by flexor-like bursts in 5-HT, whereas in dopamine the activity was shifted to a predominantly extensor-like pattern. 5. The relationship between flexor and extensor burst duration and cycle duration was more variable than described for locomotor activity in adult animals. 6. The relative timing of muscle activity was stable from P0 to P4. The most important difference between rats aged 0-1 days and rats aged 2-4 days was a delayed flexor-extensor transition in older animals. 7. The complex timing of hindlimb muscle activity was relatively unchanged after transecting all dorsal roots. 8. Finally, the relationship between flexor and extensor activity and ventral root discharges was determined. It was found that the L2 ventral root burst was in phase with simple flexors while the L5 burst coincide with the extensor phase. 9. We conclude, that 5-HT and dopamine can activate spinal central pattern generators (CPGs) that already at birth are able to produce distinct patterns of motor activity. Modulatory inputs thus seems to be able to reconfigure the CPGs to produce specific motor outputs.


2008 ◽  
Vol 24 (3) ◽  
pp. 280-287 ◽  
Author(s):  
Yong “Tai” Wang ◽  
Konstantinos Dino Vrongistinos ◽  
Dali Xu

The purposes of this study were to examine the consistency of wheelchair athletes’ upper-limb kinematics in consecutive propulsive cycles and to investigate the relationship between the maximum angular velocities of the upper arm and forearm and the consistency of the upper-limb kinematical pattern. Eleven elite international wheelchair racers propelled their own chairs on a roller while performing maximum speeds during wheelchair propulsion. A Qualisys motion analysis system was used to film the wheelchair propulsive cycles. Six reflective markers placed on the right shoulder, elbow, wrist joints, metacarpal, wheel axis, and wheel were automatically digitized. The deviations in cycle time, upper-arm and forearm angles, and angular velocities among these propulsive cycles were analyzed. The results demonstrated that in the consecutive cycles of wheelchair propulsion the increased maximum angular velocity may lead to increased variability in the upper-limb angular kinematics. It is speculated that this increased variability may be important for the distribution of load on different upper-extremity muscles to avoid the fatigue during wheelchair racing.


2018 ◽  
Vol 25 (4) ◽  
pp. 614-620 ◽  
Author(s):  
Rahul Jain ◽  
Makkhan Lal Meena ◽  
Manoj Kumar Sain ◽  
Govind Sharan Dangayach

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2922 ◽  
Author(s):  
Yang Yao ◽  
Sungtae Shin ◽  
Azin Mousavi ◽  
Chang-Sei Kim ◽  
Lisheng Xu ◽  
...  

This study investigates the potential of the limb ballistocardiogram (BCG) for unobtrusive estimation of cardiovascular (CV) parameters. In conjunction with the reference CV parameters (including diastolic, pulse, and systolic pressures, stroke volume, cardiac output, and total peripheral resistance), an upper-limb BCG based on an accelerometer embedded in a wearable armband and a lower-limb BCG based on a strain gauge embedded in a weighing scale were instrumented simultaneously with a finger photoplethysmogram (PPG). To standardize the analysis, the more convenient yet unconventional armband BCG was transformed into the more conventional weighing scale BCG (called the synthetic weighing scale BCG) using a signal processing procedure. The characteristic features were extracted from these BCG and PPG waveforms in the form of wave-to-wave time intervals, wave amplitudes, and wave-to-wave amplitudes. Then, the relationship between the characteristic features associated with (i) the weighing scale BCG-PPG pair and (ii) the synthetic weighing scale BCG-PPG pair versus the CV parameters, was analyzed using the multivariate linear regression analysis. The results indicated that each of the CV parameters of interest may be accurately estimated by a combination of as few as two characteristic features in the upper-limb or lower-limb BCG, and also that the characteristic features recruited for the CV parameters were to a large extent relevant according to the physiological mechanism underlying the BCG.


2012 ◽  
Vol 108 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Robert D. Flint ◽  
Christian Ethier ◽  
Emily R. Oby ◽  
Lee E. Miller ◽  
Marc W. Slutzky

Local field potentials (LFPs) in primary motor cortex include significant information about reach target location and upper limb movement kinematics. Some evidence suggests that they may be a more robust, longer-lasting signal than action potentials (spikes). Here we assess whether LFPs can also be used to decode upper limb muscle activity, a complex movement-related signal. We record electromyograms from both proximal and distal upper limb muscles from monkeys performing a variety of reach-to-grasp and isometric wrist force tasks. We show that LFPs can be used to decode activity from both proximal and distal muscles with performance rivaling that of spikes. Thus, motor cortical LFPs include information about more aspects of movement than has been previously demonstrated. This provides further evidence suggesting that LFPs could provide a highly informative, long-lasting signal source for neural prostheses.


Sign in / Sign up

Export Citation Format

Share Document