Two-belt continuous line bucket system: Its concept design and fundamental bucket motion experiments

2015 ◽  
Vol 53 ◽  
pp. 125-131 ◽  
Author(s):  
Yoshiki Nishi ◽  
Tomohiro Yamai ◽  
Kohsuke Ikeda
Author(s):  
A.N. Shishkin ◽  
◽  
E.O. Timashev ◽  
V.I. Solovykh ◽  
M.G. Volkov ◽  
...  

2019 ◽  
Author(s):  
Yunlong Zhang ◽  
Djorn Karnick ◽  
Marc Schneider ◽  
Lars Eisenblätter ◽  
Thomas Kühner ◽  
...  

2019 ◽  
Vol 29 (2) ◽  
pp. 1-2 ◽  
Author(s):  
Lina Wang ◽  
Guannan Bai ◽  
Runtao Zhang ◽  
Jianhui Liang
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1505
Author(s):  
Byeongjun Lee ◽  
Younghyeon Song ◽  
Chan Park ◽  
Jungmin Kim ◽  
Jeongbeom Kang ◽  
...  

The patterning of electrospun fibers is a key technology applicable to various fields. This study reports a novel focused patterning method for electrospun nanofibers that uses a cylindrical dielectric guide. The finite elements method (FEM) was used to analyze the electric field focusing phenomenon and ground its explanation in established theory. The horizontal and vertical electric field strengths in the simulation are shown to be key factors in determining the spatial distribution of nanofibers. The experimental results demonstrate a relationship between the size of the cylindrical dielectric guide and that of the electrospun area accumulated in the collector. By concentrating the electric field, we were able to fabricate a pattern of less than 6 mm. The demonstration of continuous line and square patterning shows that the electrospun area can be well controlled. This novel patterning method can be used in a variety of applications, such as sensors, biomedical devices, batteries, and composites.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110343
Author(s):  
Mei Yang ◽  
Yimin Xia ◽  
Lianhui Jia ◽  
Dujuan Wang ◽  
Zhiyong Ji

Modular design, Axiomatic design (AD) and Theory of inventive problem solving (TRIZ) have been increasingly popularized in concept design of modern mechanical product. Each method has their own advantages and drawbacks. The benefit of modular design is reducing the product design period, and AD has the capability of problem analysis, while TRIZ’s expertise is innovative idea generation. According to the complementarity of these three approaches, an innovative and systematic methodology is proposed to design big complex mechanical system. Firstly, the module partition is executed based on scenario decomposition. Then, the behavior attributes of modules are listed to find the design contradiction, including motion form, spatial constraints, and performance requirements. TRIZ tools are employed to deal with the contradictions between behavior attributes. The decomposition and mapping of functional requirements and design parameters are carried out to construct the structural hierarchy of each module. Then, modules are integrated considering the connections between each other. Finally, the operation steps in application scenario are designed in temporal and spatial dimensions. Design of cutter changing robot for shield tunneling machine is taken as an example to validate the feasibility and effectiveness of the proposed method.


2021 ◽  
Vol 11 (16) ◽  
pp. 7246
Author(s):  
Julius Moritz Berges ◽  
Georg Jacobs ◽  
Sebastian Stein ◽  
Jonathan Sprehe

Locally load-optimized fiber-based composites, the so-called tailored textiles (TT), offer the potential to reduce weight and cost compared to conventional fiber-reinforced plastics (FRP). However, the design of TT has a higher complexity compared to FRP. Current approaches, focusing on solving this complexity for multiple objectives (cost, weight, stiffness), require great effort and calculation time, which makes them unsuitable for serial applications. Therefore, in this paper, an approach for the efficient creation of simplified TT concept designs is presented. By combining simplified models for structural design and cost estimation, the most promising concepts, regarding the cost, weight, and stiffness of TT parts, can be identified. By performing a parameter study, the cost, weight, and stiffness optima of a sample part compared to a conventional FRP component can be determined. The cost and weight were reduced by 30% for the same stiffness. Applying this approach at an early stage of product development reduces the initial complexity of the subsequent detailed engineering design, e.g., by applying methods from the state of the art.


Sign in / Sign up

Export Citation Format

Share Document