Experimental research on ventilation characteristics of a main engine room in a jack-up offshore platform

2021 ◽  
Vol 117 ◽  
pp. 102897
Author(s):  
Yingchun Xie ◽  
Jin Qin ◽  
Jinchi Zhu ◽  
Guijie Liu ◽  
Zepeng Zheng ◽  
...  
2013 ◽  
Vol 787 ◽  
pp. 687-692
Author(s):  
Xiao Zhong Xie ◽  
Lin Chen ◽  
Zhuo Li ◽  
Feng Sun

Based on Statistical Energy Analysis (SEA), this paper studies the influence of fans arrangement to offshore platform noise, analyses the noise distributions of typical offshore platform areas when the inlet fans are arranged in the Main Engine Room and out of it. On this basis, with the aim of optimal noise in platform, this paper carries out optimal design of the fan arrangement and shows it. The study shows that: the noise influence of inlet and exhaust fans arrangement to Main engine room is relatively small. But it is relatively large to the Public area and the Living area around the Main Engine Room. From the view of platform noise control, the inlet and exhaust fans should be arranged in the Main Engine Room.


2015 ◽  
Author(s):  
Chilukuri Maheshwar

In February 2013, in the 2005 built 15500 TEU 397m long container ship EMMA MÆRSK a severe leakage occurred in as it was passing southbound through the Suez Canal. The leakage occurred due to mechanical breakdown of a stern thruster causing flooding of the shaft tunnel and filling up the engine room with 14000 m³ of seawater within a span of two hours, submerging the main engine cylinder heads-level equal to the outside water draft of 15.1 m. The cost of repairs and loss of revenue for six months amounted to a few million dollars. This paper highlights some of the lessons learned from this incident.


2021 ◽  
Vol 157 (A2) ◽  
Author(s):  
H Demirel ◽  
K Ünlügençoğlu ◽  
F Alarçin ◽  
A Balin

Ship engine room has a structure which has to meet a number of needs with regard to administrative conditions. Therefore, when the complicated structure of engine room are considered, even a simple mechanical failure, if no measures taken abruptly, grows into irreversible condition, causing losses that cannot be compensated. A well-qualified ship engine conductor along with an effective error detection system is needed to detect failure and act immediately against any engine impairments possible. This study aims to manage troubleshooting in main engine auxiliary systems which cover cooling, lubricating and cooling oil and fuel systems. The study is also thought to be a good reference for maintenance processes for marine engineering operators. Breakdown of main engine equipment are examined and troubles hooting program is developed for using Fuzzy Analytic Hierarchy Process (F-AHP) determine solution methods and causes of such breakdowns. In this paper, a fuzzy Multi Criteria Decision Making (MCDM) methodology was proposed to determine the most effected system of the ship main diesel engine. The results showed that fuel system was the most effected alternative, as being followed subsequently by cooling system, governor system, air supply system and oiling system. The results were based upon the opinions of three experts groups who ranked the ship main diesel engine systems alternatives according to twenty-nine criteria expert selected.


2018 ◽  
Vol Vol 160 (A2) ◽  
Author(s):  
A Balin ◽  
H Demirel ◽  
E Celik ◽  
F Alarcin

The ship engine room has a structure that meets a number of needs related to administrative conditions. Even if a simple mechanical error is considered to be the addition of human errors into the complex structure of the engine room, it can lead to undetected loss. How the causes and effects of the detected faults affect the system is as important as an effective fault detection system to detect the fault and take immediate action against any possible engine failure. This study reveals the causes of problems occurring in the main engine auxiliary systems including cooling, lubricating, cooling oil and fuel systems, and the extent of these problems affecting the system. While the Decision Making Trial and Evaluation Laboratory supports to identify and analyze the error detection of auxiliary systems with respect to causal effect relation diagram, fuzzy sets deal with the uncertainty in decision-making and human judgements through the DEMATEL. Therefore, fuzzy DEMATEL approach is applied to examine the causes and the weights of the faults and their relation to each other in the auxiliary systems. When we look at the result of the proposed approach, fuel oil pump failures has more impact on the all system and air cooler problems has the second highest place among the all errors.


2019 ◽  
Vol 16 (2) ◽  
pp. 87-98 ◽  
Author(s):  
GVV Pavan Kumar ◽  
V V S Prasad ◽  
B H Nagesh

Ship vibrations, airborne and underwater noise levels have always been a challenging topic from a performance point of view in ship design, building and operation. The measurement shall help in monitoring the self-noise and the technical state of their machinery mechanism. The vibration levels on the main engine and auxiliary Genset foundation, airborne noise levels of the engine room and underwater self-noise levels of a small mechanized fishing trawler was measured at the jetty in idling condition.  The vibration levels on the foundation measured the average value of 0.207 mm/s for the main engine and 1.36 mm/s for auxiliary Genset. The airborne noise levels measured 99 dB (A) in the engine room. The peak underwater sound pressure levels measured 162 dB re 1µPa. The response spectra indicate the peak vibration and noise levels in the lower frequency region <1.2 kHz. The machinery excitation forces transferred to the hull surface as pressure fluctuations which generated the airborne and underwater noise levels. Though the measurement limited to jetty conditions, detailed analysis can be useful for detection, classification, and tracking of small vessels.


2019 ◽  
Vol 4 (2) ◽  
pp. 149-157
Author(s):  
Wibowo Harso Nugroho ◽  
Abdul Kadir ◽  
Nanang JH Purnomo ◽  
M. Syaiful ◽  
Ahmad Yasim

With the increase of the Decommisioning Offshore Platform in Indonesia water, a decommisioning vehicle is needed to dismantle and transport the offshore platform. Because of the operation of this vehicle to disassemble offshore platform in various offshore platform locations in Indonesian water, it is necessary to consider the vehicle main engine power by predicting the ship resistance when traveling to the offshore platform location. This paper discusses the results of several numerical prediction methods of resistance that applied on the catamaran ship type. The prediction method used for resistance calculation which based on satistical data and analytical methods from the cylindrical body theory. The resistance prediction on the decommisioning vehicles using maxsurf resistance with various methods at 12 knots service speed shows that Holtrop method produces a resistance value of 250.7 kN, the Van Oortmerssen method produces a resistance value of 955 kN, the Series60 method produces a resistance value of 210.5 kN, the Compton method produces a resistance value of 295.8 kN, the Fung method produces a resistance value of 540.6 kN, method Slender body produces a resistance value of 7036.4 kN, the Wyman method produces a resistance value of 603.2 kN and finally the last method of KR Barge produces a resistance value of 1258.5 kN. This study show that the differences of the result are significant from each of the prediction methods so that testing of the hydrodynamic model is highly recommended.


2020 ◽  
Vol 2 (1) ◽  
pp. 100-111
Author(s):  
Leszek Chybowski ◽  
Seweryn Strojecki ◽  
Włodzimierz Markiewicz

AbstractThis article presents topics concerning fire hazards during the use of low-speed diesel engines in marine vehicles. The causes and effects of fires in the spaces of scavenge air receivers in marine diesel engines are presented. Methods to prevent and fight these fires are shown, including the operating procedures required from ship engine room operators. The possibility of training personnel to apply the abovementioned procedures during operation using simulations of a Kongsberg MC-90 IVship engine room is presented. Simulations were conducted which included a fire in a scavenge air receiver occurring during the operation of a MAN B&W 5L90MC main engine, with loads corresponding to 50% and 100% of the machine’s recommended setting.


2020 ◽  
Vol 101 ◽  
pp. 102263 ◽  
Author(s):  
Guijie Liu ◽  
Yuanfang Sun ◽  
Benlei Zhong ◽  
Yingchun Xie ◽  
Atilla Incecik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document