scholarly journals Reindeer grazing alter soil fungal community structure and litter decomposition related enzyme activities in boreal coniferous forests in Finnish Lapland

2018 ◽  
Vol 132 ◽  
pp. 74-82 ◽  
Author(s):  
Minna Santalahti ◽  
Hui Sun ◽  
Outi-Maaria Sietiö ◽  
Kajar Köster ◽  
Frank Berninger ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Tong Jia ◽  
Xuerong Wang ◽  
Tingyan Guo ◽  
Baofeng Chai

Microorganisms drive litter decomposition while maintaining the chemical cycle of ecosystems. We used the dominant vegetation (Imperata cylindrica) in the mining area selected for this study for this experiment to explore fungal community characteristics, key fungal groups, and their associative driving factors during I. cylindrica litter decomposition. Maximum litter C/N values occurred 100days after the commencement of the decomposition experiment during all different recovery years in this copper tailings area. Heavy metals in litter [copper (Cu), zinc (Zn), plumbum (Pb), and cadmium (Cd)] accumulated gradually with decomposition. The dominant fungal phyla observed in the community were Ascomycota and Basidiomycota, while the classes Sordariomycetes and Eurotiomycetes significantly increased as litter decomposition progressed. Degrees of connectivity and interaction between fungal communities were highest during the early litter decomposition stage. Sordariomycetes, Dothideomycetes, and Leotiomycetes all played critical roles in maintaining fungal community relationships. The effect of physicochemical properties and enzyme activities in I. cylindrica litter was significant on the dominant fungi, while driving factors that affected fungal communities differed over different recovery stages. Total nitrogen (TN), heavy metals, pH, and enzyme activities in the little were significantly correlated with fungal community composition. Litter properties throughout the litter decomposition process mainly affected the dynamics of the fungal community structure. The main environmental factors that affected fungal community structure were copper content and pH. Dichotomopilus, Trichoderma, Knufia, Phialophora, Oxyporus, and Monocillium, which all played important roles in litter decomposition, positively correlated with heavy metals, sucrase, and catalase. Finally, results from this study will help us better clarify litter decomposition mechanisms in degraded ecosystems as well as provide a scientific basis for improving species cycling and nutrient transformation efficiency in mining ecosystems.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 167 ◽  
Author(s):  
Mengmeng Zhang ◽  
Ning Wang ◽  
Jingyun Zhang ◽  
Yanbo Hu ◽  
Dunjiang Cai ◽  
...  

A better understanding of soil fungal communities is very useful in revealing the effects of an agroforestry system and would also help us to understand the fungi-mediated effects of agricultural practices on the processes of soil nutrient cycling and crop productivity. Compared to conventional monoculture farming, agroforestry systems have obvious advantages in improving land use efficiency and maintaining soil physicochemical properties, reducing losses of water, soil material, organic matter, and nutrients, as well as ensuring the stability of yields. In this study, we attempted to investigate the impact of a mulberry/alfalfa intercropping system on the soil physicochemical properties and the rhizosphere fungal characteristics (such as the diversity and structure of the fungal community), and to analyze possible correlations among the planting pattern, the soil physicochemical factors, and the fungal community structure. In the intercropping and monoculture systems, we determined the soil physicochemical properties using chemical analysis and the fungal community structure with MiSeq sequencing of the fungal ITS1 region. The results showed that intercropping significantly improved the soil physicochemical properties of alfalfa (total nitrogen, alkaline hydrolysable nitrogen, available potassium, and total carbon contents). Sequencing results showed that the dominant taxonomic groups were Ascomycota, Basidiomycota, and Mucoromycota. Intercropping increased the fungal richness of mulberry and alfalfa rhizosphere soils and improved the fungal diversity of mulberry. The diversity and structure of the fungal community were predominantly influenced by both the planting pattern and soil environmental factors (total nitrogen, total phosphate, and total carbon). Variance partitioning analysis showed that the planting pattern explained 25.9% of the variation of the fungal community structure, and soil environmental factors explained 63.1% of the variation. Planting patterns and soil physicochemical properties conjointly resulted in changes of the soil fungal community structure in proportion.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7127 ◽  
Author(s):  
Qin Yao ◽  
Yanxia Xu ◽  
Xuefeng Liu ◽  
Junjie Liu ◽  
Xinyu Huang ◽  
...  

To compensate for the seasonal imbalance between livestock and forage yield in the cold region of Northeast China, alfalfa (Medicago sativa L.) continuous cropping has been widely employed in animal husbandry. However, the effects of continuous cropping of alfalfa on soil properties, including physical, chemical and biological properties, are poorly understood. In this study, we investigated the soil properties and fungal community composition of alfalfa fields under continuous cropping for different time periods (i.e., 1, 2, 6, 9, 12, 13 and 35 years). The results showed that soil moisture, total C, total N, NO3−-N and available K content decreased at less than 10 years of continuous cropping and then increased at more than 10 years of continuous cropping, but soil total P and available P content showed the opposite tendency. The soil fungal community composition determined using Illumina Miseq sequencing showed that continuous cropping increased the fungal alpha diversity and changed the fungal community structure. The relative abundances of Guehomyces and Chaetomium decreased, but the relative abundances of Phaeomycocentrospora and Paecilomyces increased with continuous cropping time. In addition, continuous cropping of alfalfa increased the relative abundances of some plant pathogens, such as Haematonectria haematococca and Cyphellophora sp. Soil total P and available P content were important soil factors affecting the soil fungal community diversity, fungal community structure and the relative abundances of specific fungi in this alfalfa continuous cropping system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xianqing Zheng ◽  
Ke Song ◽  
Shuangxi Li ◽  
Hanlin Zhang ◽  
Naling Bai ◽  
...  

AbstractThe diversity and community structure of soil fungi play an important role in crop production and ecosystem balance, especially in paddy-upland vegetable field systems. High-throughput sequencing was used to study changes in the soil fungal community structure and function in paddy-upland vegetable field systems. The results showed that compared with traditional planting, the diversity and community structure of soil fungi were changed by the combination of flooding and drought, the Shannon index increased by 11.07%, and the proportion of the dominant species, Mortierella, decreased by 22.74%. Soil available nitrogen, total phosphorus, available phosphorus, total nitrogen and organic matter played a leading role in the initial stage of the experiment, while the dominant factor changed to total potassium 3 years later and then to soil pH and water content 6 years later. FUNGuild analysis showed that the proportion of three independent trophic modes of soil fungi were increased by the combined flooded-drought model, and there were multiple interaction factors, For example, nutrient supply, pH and planting pattern. This study showed that soil fertility, crop yield and economic benefits were better than the traditional model after three years of planting and breeding. The longer the time, the better the effect.


Sign in / Sign up

Export Citation Format

Share Document