Role of crystal orientation on chemical mechanical polishing of single crystal copper

2016 ◽  
Vol 386 ◽  
pp. 262-268 ◽  
Author(s):  
Aibin Zhu ◽  
Dayong He ◽  
Wencheng Luo ◽  
Yangyang Liu
2021 ◽  
pp. 150431
Author(s):  
Longxing Liao ◽  
Zhenyu Zhang ◽  
Fanning Meng ◽  
Dongdong Liu ◽  
Bin Wu ◽  
...  

1955 ◽  
Vol 33 (12) ◽  
pp. 1756-1767
Author(s):  
K. Ekler ◽  
C. A. Winkler

The polarization–time relations for the initial (Pi), maximum (Pmax), and pseudo-steady-state (Ps) polarizations on copper single crystals in the absence and presence of gelatin and gelatin plus chloride ion were found to depend upon crystal orientation. The Pi and Pmax in the absence of gelatin, the Pi in its presence, and the static potentials were all similarly related to the reticular density. The Pi increased, and the time to maximum polarization (tmax) decreased, with increase of current density; the relations between these quantities showed marked differences for the different crystals. The variation with reticular density of Pi and Pmax in the absence of addition agents and of Pi in its presence probably represents differences in activation overpotential at the various crystal faces. The adsorption of gelatin on different crystal faces was also found to be markedly different. Polarization in the presence of gelatin was decreased by small amounts of chloride ion; a linear relation for all the crystals used was obtained by plotting the increase in polarization caused by gelatin against the decrease caused by 2 mgm./liter chloride ion in the presence of gelatin. In the absence of addition agent, change of acid concentration from 50 to 200 gm./liter had no effect on Pi and addition of chloride ion had no effect on Ps at single crystal cathodes.


2020 ◽  
Vol 10 (22) ◽  
pp. 8065
Author(s):  
Linlin Cao ◽  
Xiang Zhang ◽  
Julong Yuan ◽  
Luguang Guo ◽  
Teng Hong ◽  
...  

Sapphire has been the most widely used substrate material in LEDs, and the demand for non-C-planes crystal is increasing. In this paper, four crystal planes of the A-, C-, M- and R-plane were selected as the research objects. Nanoindentation technology and chemical mechanical polishing technology were used to study the effect of anisotropy on material properties and processing results. The consequence showed that the C-plane was the easiest crystal plane to process with the material removal rate of 5.93 nm/min, while the R-plane was the most difficult with the material removal rate of 2.47 nm/min. Moreover, the research results have great guiding significance for the processing of sapphire with different crystal orientations.


Sign in / Sign up

Export Citation Format

Share Document