Effect of controlled Mn doping on transition of oxygen vacancies in Bi 2 Ti 2 O 7 thin films: An electrochemical study

2017 ◽  
Vol 415 ◽  
pp. 75-79 ◽  
Author(s):  
Leeseung Kang ◽  
HyeLan An ◽  
Tae Hyung Kim ◽  
Duk-Hee Lee ◽  
Kyung-Soo Park ◽  
...  
2017 ◽  
Vol 110 (24) ◽  
pp. 243901 ◽  
Author(s):  
Yulei Zhang ◽  
Weili Li ◽  
Wenping Cao ◽  
Yu Feng ◽  
Yulong Qiao ◽  
...  

2021 ◽  
Vol 2070 (1) ◽  
pp. 012088
Author(s):  
Waseem Ahmad Wani ◽  
Nilofar Naaz ◽  
B. Harihara Venkataraman ◽  
Souvik Kundu ◽  
Kannan Ramaswamy

Abstract BiFeO3 (BFO) and Mn-doped BFO thin films are prepared on indium tin oxide/glass substrates using wet chemical deposition technique. The role of Mn defects (3% to 10%) on the leakage current density and other physical properties of BFO thin film devices is investigated. The X-ray diffraction patterns confirm the single-phase formation of rhombohedrally distorted BFO thin films. The scanning electron microscopy images approve uniform and crack-free film depositions, which is of great importance to the practical device applications of such materials. The oxidation states are determined by X-ray photoelectron spectroscopy (XPS). These XPS results reveal the presence of multiple valence states of Fe ions (Fe2+, Fe3+) and Mn (Mn3+, Mn4+) ions, which play a decisive role in determining the leakage current density. However, the Mn-doping at the Fe site in BFO reduces oxygen vacancies and Fe2+ states, hence suppressing the leakage current density. The leakage current density is reduced by three orders of magnitude (10−4 – 10−7) A/cm2, upon Mn-doping as clearly demonstrated by J-V characteristics. These results indicate that the primary contributors to the conduction in BFO based thin films are oxygen vacancies and the Fe2+ states in these devices.


2021 ◽  
Vol 11 (9) ◽  
pp. 3778
Author(s):  
Gene Yang ◽  
So-Yeun Kim ◽  
Changhee Sohn ◽  
Jong K. Keum ◽  
Dongkyu Lee

Considerable attention has been directed to understanding the influence of heterointerfaces between Ruddlesden–Popper (RP) phases and ABO3 perovskites on the kinetics of oxygen electrocatalysis at elevated temperatures. Here, we report the effect of heterointerfaces on the oxygen surface exchange kinetics by employing heteroepitaxial oxide thin films formed by decorating LaNiO3 (LNO) on La1.85Sr0.15CuO4 (LSCO) thin films. Regardless of LNO decoration, tensile in-plane strain on LSCO films does not change. The oxygen surface exchange coefficients (kchem) of LSCO films extracted from electrical conductivity relaxation curves significantly increase with partial decorations of LNO, whereas full LNO coverage leads to the reduction in the kchem of LSCO films. The activation energy for oxygen exchange in LSCO films significantly decreases with partial LNO decorations in contrast with the full coverage of LNO. Optical spectroscopy reveals the increased oxygen vacancies in the partially covered LSCO films relative to the undecorated LSCO film. We attribute the enhanced oxygen surface exchange kinetics of LSCO to the increased oxygen vacancies by creating the heterointerface between LSCO and LNO.


2007 ◽  
Vol 102 (7) ◽  
pp. 073905 ◽  
Author(s):  
H. J. Meng ◽  
D. L. Hou ◽  
L. Y. Jia ◽  
X. J. Ye ◽  
H. J. Zhou ◽  
...  

2018 ◽  
Vol 44 (6) ◽  
pp. 6054-6061 ◽  
Author(s):  
Yilin Zhang ◽  
Ji Qi ◽  
Yuhan Wang ◽  
Yu Tian ◽  
Junkai Zhang ◽  
...  

2022 ◽  
Vol 43 (1) ◽  
pp. 012801
Author(s):  
R. Rahaman ◽  
M. Sharmin ◽  
J. Podder

Abstract Here we discuss the synthesis of copper (II) oxide (CuO) and manganese (Mn)-doped CuO thin films varying with 0 to 8 at% Mn using the spray pyrolysis technique. As-deposited film surfaces comprised of agglomerated spherical nanoparticles and a semi-spongy porous structure for 4 at% Mn doping. Energy dispersive analysis of X-rays confirmed the chemical composition of the films. X-ray diffraction spectra showed a polycrystalline monoclinic structure with the predominance of the ( 11) peak. Optical band gap energy for direct and indirect transitions was estimated in the ranges from 2.67–2.90 eV and 0.11–1.73 eV, respectively. Refractive index and static dielectric constants were computed from the optical spectra. Electrical resistivity of CuO and Mn-doped CuO (Mn:CuO) thin films was found in the range from 10.5 to 28.6 Ω·cm. The tiniest electron effective mass was calculated for 4 at% Mn:CuO thin films. P to n-type transition was observed for 4 at% Mn doping in CuO films. Carrier concentration and mobility were found in the orders of 1017 cm–3 and 10–1 cm2/(V·s), respectively. The Hall coefficient was found to be between 9.9 and 29.8 cm3/C. The above results suggest the suitability of Mn:CuO thin films in optoelectronic applications.


Sign in / Sign up

Export Citation Format

Share Document