scholarly journals Significantly reduced leakage current density in Mn-doped BiFeO3 thin films deposited using spin coating technique

2021 ◽  
Vol 2070 (1) ◽  
pp. 012088
Author(s):  
Waseem Ahmad Wani ◽  
Nilofar Naaz ◽  
B. Harihara Venkataraman ◽  
Souvik Kundu ◽  
Kannan Ramaswamy

Abstract BiFeO3 (BFO) and Mn-doped BFO thin films are prepared on indium tin oxide/glass substrates using wet chemical deposition technique. The role of Mn defects (3% to 10%) on the leakage current density and other physical properties of BFO thin film devices is investigated. The X-ray diffraction patterns confirm the single-phase formation of rhombohedrally distorted BFO thin films. The scanning electron microscopy images approve uniform and crack-free film depositions, which is of great importance to the practical device applications of such materials. The oxidation states are determined by X-ray photoelectron spectroscopy (XPS). These XPS results reveal the presence of multiple valence states of Fe ions (Fe2+, Fe3+) and Mn (Mn3+, Mn4+) ions, which play a decisive role in determining the leakage current density. However, the Mn-doping at the Fe site in BFO reduces oxygen vacancies and Fe2+ states, hence suppressing the leakage current density. The leakage current density is reduced by three orders of magnitude (10−4 – 10−7) A/cm2, upon Mn-doping as clearly demonstrated by J-V characteristics. These results indicate that the primary contributors to the conduction in BFO based thin films are oxygen vacancies and the Fe2+ states in these devices.

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 108
Author(s):  
Yangyang Wang ◽  
Zhaoyang Li ◽  
Zhibiao Ma ◽  
Lingxu Wang ◽  
Xiaodong Guo ◽  
...  

Bi1−xSmxFe0.98Mn0.02O3 (x = 0, 0.02, 0.04, 0.06; named BSFMx) (BSFM) films were prepared by the sol-gel method on indium tin oxide (ITO)/glass substrate. The effects of different Sm content on the crystal structure, phase composition, oxygen vacancy content, ferroelectric property, dielectric property, leakage property, leakage mechanism, and aging property of the BSFM films were systematically analyzed. X-ray diffraction (XRD) and Raman spectral analyses revealed that the sample had both R3c and Pnma phases. Through additional XRD fitting of the films, the content of the two phases of the sample was analyzed in detail, and it was found that the Pnma phase in the BSFMx = 0 film had the lowest abundance. X-ray photoelectron spectroscopy (XPS) analysis showed that the BSFMx = 0.04 film had the lowest oxygen vacancy content, which was conducive to a decrease in leakage current density and an improvement in dielectric properties. The diffraction peak of (110) exhibited the maximum intensity when the doping amount was 4 mol%, and the minimum leakage current density and a large remanent polarization intensity were also observed at room temperature (2Pr = 91.859 μC/cm2). By doping Sm at an appropriate amount, the leakage property of the BSFM films was reduced, the dielectric property was improved, and the aging process was delayed. The performance changes in the BSFM films were further explained from different perspectives, such as phase composition and oxygen vacancy content.


2002 ◽  
Vol 748 ◽  
Author(s):  
Hiroshi Funakubo ◽  
Tomohiro Sakai ◽  
Takayuki Watanabe ◽  
Minoru Osada ◽  
Masato Kakihana ◽  
...  

ABSTRACTThin films of BIT, La-substituted BIT (BLT) and La- and V-cosubstituted BIT(BLTV) were epitaxially grown on SrRuO3//SrTiO3 substrates at 850°C by metalorganic chemical vapor deposition (MOCVD), and their electrical properties were systematically compared. All films on (100), (110) and (111)-oriented substrates were epitaxially grown with (001)-, (104)-/(014)-and (118) –preferred orientations, respectively. The leakage current density of the BLTV film was almost the same with that of the BLT film, but was smaller than that of BIT film, suggesting that the La substitution contributed to the decrease of the leakage current density especially in pseudoperovskite layer. Spontaneous polarization of the BLTV film was estimated to be almost the same with the BLT film but was smaller that that of the BIT film. This is explained by the decrease of Tc with the La substitution, while V did not contribute to the change of the Curie temperature (Tc ). On the other hand, the coercive field (Ec) value of the BLTV was smaller than that of the BIT and the BLT films. As a result, La substitution contributed to the decrease of the leakage current density together with the decrease of the spontaneous polarization due to the decrease of the Tc. On the other hand, V substitution contributes to the decrease of the defects that suppress the domain motion and increases the Ec value. Therefore, each substitution of La and V plays different roles and this contribution is remarkable for the films deposited at lower temperature.


1995 ◽  
Vol 415 ◽  
Author(s):  
Joon Sung Lee ◽  
Han Wook Song ◽  
Dae Sung Yoon ◽  
Byung Hyuk Jun ◽  
Byoung Gon Yu ◽  
...  

ABSTRACTSrTiO3 thin films were prepared on Si(p-type 100) and Pt/SiO2/Si substrates using ECR plasma (or without ECR plasma) assisted MOCVD. Sr(TMI-D)2 and Ti-isopropoxide were used as Sr and Ti metal organic sources, respectively. Perovskite SrTiO3 films were obtained at relatively low temperature of 500°C (using ECR oxygen plasma. Experimental results indicated that higher deposition temperature and ECR oxygen plasma increase the crystallinity, the dielectric constant and the leakage current density. The dielectric constant and the dielectric loss were 222 and 0.04, respectively, for 1234 Å thin SrTiO3 film (Sr/(Sr+Ti)=0.5). The leakage current density was 3.78 × 10−7 A/cm2 at 1.0V, and the dielectric breakdown field was 0.57MV/cm. SEM analyses showed that SrTiO3 films have a uniform and fine grain structure. In terms of step coverage, a lateral step coverage of 50% at 0.8 μm step (the aspect ratio was 1) was obtained with the thickness uniformity of ± 0.5% and the composition uniformity of ±1.2% at 4′′ wafer.


2011 ◽  
Vol 509 (17) ◽  
pp. 5326-5335 ◽  
Author(s):  
A.Z. Simões ◽  
L.S. Cavalcante ◽  
F. Moura ◽  
E. Longo ◽  
J.A. Varela

1996 ◽  
Vol 433 ◽  
Author(s):  
Kwangsoo No ◽  
Joon Sung Lee ◽  
Han Wook Song ◽  
Won Jong Lee ◽  
Byoung Gon Yu ◽  
...  

AbstractBa(TMHD)2, Sr(TMHD)2 and Ti-isopropoxide were used to fabricate the (SrxTi1 x)O3 and (Ba1 x Srx)TiO3 thin films. The decomposition and degradation characteristics of Ba(TMHD)2 and Sr(TMHD)2 with storage time were analyzed using a differential scanning calorimeter (DSC). The thin films were fabricated on Si(p-type 100) and Pt/SiO2/Si substrates with Ar carrier gas using ECR plasma (or without ECR plasma) assisted MOCVD. Experimental results showed that the ECR oxygen plasma increased the deposition rate, the ratio of Sr/Ti, the dielectric constant and the leakage current density of the film. The dependency of the crystallinity and the electrical properties on the Sr/Ti ratio of films were investigated. However, almost of the films deposited with Ar carrier gas had slightly high dielectric loss and high leakage current density and showed non-uniform compositional depth profiles. NH3 gas was also used to decrease the degradation of the MO-sources. Mass spectra in-situ monitoring of source vapors in ECR-PAMOCVD system were obtained. By introducing NH3 as a carrier gas, a significant improvement was achieved in the volatility and the thermal stability of the precursors, and the vaporization temperatures of the precursors were reduced compared to Ar carrier gas. The uniform compositional depth profile, less hydrogen and carbon content and the good electrical properties of (SrxTi1−x)O3 thin films were obtained with NH3 carrier gas. The (Ba1−xSrx)TiO3 thin film were fabricated to have very fine and uniform microstructure, the dielectric constant of 456, the dielectric loss of 0.0128, the leakage current density of 5.01 × 10−8A/cm2 at 1V and the breakdown field of 3.65MV/cm.


2002 ◽  
Vol 748 ◽  
Author(s):  
Shin Kikuchi ◽  
Hiroshi Ishiwara

ABSTRACTSi-added SrBi2Ta2O9 (SBT) ferroelectric films were prepared by RF magnetron sputtering on a Pt/Ti/SiO2/Si (100) structure. The films were deposited at temperatures below 100°C for preventing Bi evaporation and crystallized at 800°C in air. A typical composition was Sr0.79Bi2.37Ta2.00Si0.2Ox. The remnant polarization value(2Pr) of the Si-added SBT film was 16C/cm2 and leakage current density was 5×10-8A/cm2. The current density was significantly decreased by adding Si atoms.


2002 ◽  
Vol 748 ◽  
Author(s):  
Suprem R. Das ◽  
Rasmi R. Das ◽  
P. Bhattacharya ◽  
Ram S. Katiyar

ABSTRACTPulsed laser deposition technique was used to fabricate Ba0.5Sr0.5TiO 3 (BST) thin-films on Pt/TiO 2/SiO2/Si substrates. The influence of thin interfacial layers of Ta2O5, TiO2, and ZrO2, on the structural and electrical properties of BST thin films was investigated. Insertion of interfacial layers does not affect the perovskite phase formation of BST thin films. Buffer layers helped to make uniform distribution of grains and resulted in a relative increase in the average grain size. The dielectric tunability of BST thin films was reduced with the presence of buffer layers. A BST thin film having a dielectric permitivity of 470 reduced to 337, 235 and 233 in the presence of Ta2O5, TiO2, and ZrO2 layers, respectively. The reduction of the relative dielectric permittivity of BST films with the insertion of interfacial layers was explained in terms of a series capacitance effect, due to the low dielectric constant of interfacial layers. The TiO2 layer did not show any appreciable change in the leakage current density. Deposition of thin Ta2O5 and ZrO2 interfacial layer on top of Pt reduced the leakage current density by an order of magnitude.


1994 ◽  
Vol 361 ◽  
Author(s):  
Hideaki Yamauchi ◽  
Takafumi Kimura ◽  
Masao Yamada

ABSTRACTSrTiO3 thin films have been prepared by MOCVD. A novel Sr source of Sr(DPM)2-tetraen2 was used to stabilize source delivery and to reduce the vaporization temperature of Sr source. Films were deposited on Pt/Ta/Si substrates at deposition temperatures from 450 °C to 600 °C. The relative dielectric constant was about 220 at the deposition temperatures from 550 °C to 600 °C for as-deposited 90-nm-thick films. The leakage current density was in the range of 10−7 A/cm2, typically.


2013 ◽  
Vol 741 ◽  
pp. 11-17
Author(s):  
Xiao Hua Sun ◽  
Ya Xia Qiao ◽  
Shuang Hou ◽  
Ying Yang ◽  
Cai Hua Huang

Ba0.6Sr0.4TiO3 (BST) thin films were fabricated by solgel technique on Pt/Ti/SiO2/Si substrate without and with PbO seeding layer from precursor solutions with different concentrations. The crystal structure, surface morphology, dielectric properties and leakage current density of BST thin films are investigated as functions of the concentration of PbO precursor solution. Its found that the growth orientation of BST thin films with PbO seeding layer can be modulated through adjusting the concentration of PbO precursor solution. BST thin film with PbO seeding layer from 0.05 M precursor solution shows the highest dielectric constant and tunability, which may be attributed to the high crystallization and amplitude of the polarization in high (100) preferred orientated films. The leakage current density of BST films increases with the increasing concentration of PbO precursor solution and agrees well with the space-charge-limited current mechanism at room temperature.


Sign in / Sign up

Export Citation Format

Share Document