Role of grain boundary on the growth behavior of anodic film on spark plasma sintered AA6061

2021 ◽  
pp. 149473
Author(s):  
Haobo Shi ◽  
Mei Yu ◽  
Jianhua Liu ◽  
Jie Wang ◽  
Haodong Yang ◽  
...  
2011 ◽  
Vol 484 ◽  
pp. 107-116 ◽  
Author(s):  
D.V. Quach ◽  
S. Kim ◽  
R.A. De Souza ◽  
Manfred Martin ◽  
Z.A. Munir

Through the use of a high-pressure modification of the spark plasma sintering method, it was possible to consolidate functional oxides (yttria- stabilized zirconia and doped ceria) to high densities and retain a grain size of < 20 nm. The role of the pressure on densification and on the grain size of the sintered samples was demonstrated. The pressure had a marked effect on density at relatively low temperature but an insignificant effect at relatively high temperature. It was found that when prepared with such small grain sizes, these oxides conduct protonically even at temperatures as low as room temperature. The dependence of the protonic conductivity is stronger dependence on grain size than what can be anticipated from a geometric consideration based on an increase in grain boundary area. This observation strongly suggests that factors other than an increase in grain boundary area play a role, a consideration that is being further investigated.


Author(s):  
A.H. Advani ◽  
L.E. Murr ◽  
D. Matlock

Thermomechanically induced strain is a key variable producing accelerated carbide precipitation, sensitization and stress corrosion cracking in austenitic stainless steels (SS). Recent work has indicated that higher levels of strain (above 20%) also produce transgranular (TG) carbide precipitation and corrosion simultaneous with the grain boundary phenomenon in 316 SS. Transgranular precipitates were noted to form primarily on deformation twin-fault planes and their intersections in 316 SS.Briant has indicated that TG precipitation in 316 SS is significantly different from 304 SS due to the formation of strain-induced martensite on 304 SS, though an understanding of the role of martensite on the process has not been developed. This study is concerned with evaluating the effects of strain and strain-induced martensite on TG carbide precipitation in 304 SS. The study was performed on samples of a 0.051%C-304 SS deformed to 33% followed by heat treatment at 670°C for 1 h.


Author(s):  
Jin Young Kim ◽  
R. E. Hummel ◽  
R. T. DeHoff

Gold thin film metallizations in microelectronic circuits have a distinct advantage over those consisting of aluminum because they are less susceptible to electromigration. When electromigration is no longer the principal failure mechanism, other failure mechanisms caused by d.c. stressing might become important. In gold thin-film metallizations, grain boundary grooving is the principal failure mechanism.Previous studies have shown that grain boundary grooving in gold films can be prevented by an indium underlay between the substrate and gold. The beneficial effect of the In/Au composite film is mainly due to roughening of the surface of the gold films, redistribution of indium on the gold films and formation of In2O3 on the free surface and along the grain boundaries of the gold films during air annealing.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 600
Author(s):  
Thomas Ferrand ◽  
Damien Deldicque

Tectonic plates are thought to move above the asthenosphere due to the presence of accumulated melts or volatiles that result in a low-viscosity layer, known as lithosphere–asthenosphere boundary (LAB). Here, we report experiments suggesting that the plates may slide through a solid-state mechanism. Ultrafine-grained aggregates of Mg2GeO4 and minor MgGeO3 were synthetized using spark plasma sintering (SPS) and deformed using a 1-atm deformation rig between 950 °C and 1250 °C. For 1000 < T < 1150 °C, the derivative of the stress–strain relation of the material drops down to zero once a critical stress as low as 30–100 MPa is reached. This viscosity reduction is followed by hardening. The deformation curves are consistent with what is commonly observed in steels during the shear-induced transformation from austenite to martensite, the final material being significantly harder. This is referred to as TRansformation-Induced Plasticity (TRIP), widely observed in metal alloys (TRIP alloys). It should be noted that such enhanced plasticity is not necessarily due to a phase transition, but could consist of any kind of transformation, including structural transformations. We suspect a stress-induced grain-boundary destabilization. This could be associated to the transient existence of a metastable phase forming in the vicinity of grain boundaries between 1000 and 1150 °C. However, no such phase can be observed in the recovered samples. Whatever its nature, the rheological transition seems to occur as a result of a competition between diffusional processes (i.e., thermally activated) and displacive processes (i.e., stress-induced and diffusionless). Consequently, the material would be harder at 1200 °C than at 1100 °C thanks to diffusion that would strengthen thermodynamically stable phases or grain-boundary structures. This alternative scenario for the LAB would not require volatiles. Instead, tectonic plates may slide on a layer in which the peridotite is constantly adjusting via a grain-boundary transformation.


2020 ◽  
Vol 9 (3) ◽  
pp. 6268-6277 ◽  
Author(s):  
O.J. Akinribide ◽  
B.A. Obadele ◽  
O.O. Ayeleru ◽  
S.O. Akinwamide ◽  
K. Nomoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document