Preventing algae biofilm formation via designing long-term oil storage surfaces for excellent antifouling performance

2021 ◽  
pp. 149612
Author(s):  
Mingyu Xie ◽  
Wenjie Zhao ◽  
Yinghao Wu
Pathogens ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 93 ◽  
Author(s):  
Riau ◽  
Aung ◽  
Setiawan ◽  
Yang ◽  
Yam ◽  
...  

: Bacterial biofilm on medical devices is difficult to eradicate. Many have capitalized the anti-infective capability of silver ions (Ag+) by incorporating nano-silver (nAg) in a biodegradable coating, which is then laid on polymeric medical devices. However, such coating can be subjected to premature dissolution, particularly in harsh diseased tissue microenvironment, leading to rapid nAg clearance. It stands to reason that impregnating nAg directly onto the device, at the surface, is a more ideal solution. We tested this concept for a corneal prosthesis by immobilizing nAg and nano-hydroxyapatite (nHAp) on poly(methyl methacrylate), and tested its biocompatibility with human stromal cells and antimicrobial performance against biofilm-forming pathogens, Pseudomonas aeruginosa and Staphylococcus aureus. Three different dual-functionalized substrates—high Ag (referred to as 75:25 HAp:Ag); intermediate Ag (95:5 HAp:Ag); and low Ag (99:1 HAp:Ag) were studied. The 75:25 HAp:Ag was effective in inhibiting biofilm formation, but was cytotoxic. The 95:5 HAp:Ag showed the best selectivity among the three substrates; it prevented biofilm formation of both pathogens and had excellent biocompatibility. The coating was also effective in eliminating non-adherent bacteria in the culture media. However, a 28-day incubation in artificial tear fluid revealed a ~40% reduction in Ag+ release, compared to freshly-coated substrates. The reduction affected the inhibition of S. aureus growth, but not the P. aeruginosa. Our findings suggest that Ag+ released from surface-immobilized nAg diminishes over time and becomes less effective in suppressing biofilm formation of Gram-positive bacteria, such as S. aureus. This advocates the coating, more as a protection against perioperative and early postoperative infections, and less as a long-term preventive solution.


2016 ◽  
Vol 78 (12) ◽  
Author(s):  
A. Nazerah ◽  
A. F. Ismail ◽  
Juhana Jaafar

Biofouling has become concern issue in all pressure driven membrane technology. The attachment of microorganism to the membrane surface gave an effect to membrane life span, increased operating and maintenance costs. Therefore, this review is focusing on the development of nanocomposite membrane based on improving bactericidal properties to suppress the activity of attached organisms in order to minimize biofilm formation. This approach was done with incorporation of biocidal nanomaterials into a polymeric membrane matrix by include metal-based nanoparticles such as Titanium dioxide (TiO2), Copper (Cu), Silver (Ag), Zinc oxide (ZnO); carbon-based nanomaterials including graphene oxide (GO) and carbon nanotubes (CNTs) and hybrid nanomaterials. Current constraints and prospective by the use of nanomaterials are discussed in order to increase antibacterial property for long term application for further implementation in membrane systems from the views of water and wastewater treatment applications.


2018 ◽  
Vol 85 (4) ◽  
Author(s):  
Sarah Forbes ◽  
Nicola Morgan ◽  
Gavin J. Humphreys ◽  
Alejandro Amézquita ◽  
Hitesh Mistry ◽  
...  

ABSTRACTAssessing the risk of resistance associated with biocide exposure commonly involves exposing microorganisms to biocides at concentrations close to the MIC. With the aim of representing exposure to environmental biocide residues,Escherichia coliMG1655 was grown for 20 passages in the presence or absence of benzalkonium chloride (BAC) at 100 ng/liter and 1,000 ng/liter (0.0002% and 0.002% of the MIC, respectively). BAC susceptibility, planktonic growth rates, motility, and biofilm formation were assessed, and differentially expressed genes were determined via transcriptome sequencing. Planktonic growth rate and biofilm formation were significantly reduced (P< 0.001) following BAC adaptation, while BAC minimum bactericidal concentration increased 2-fold. Transcriptomic analysis identified 289 upregulated and 391 downregulated genes after long-term BAC adaptation compared with the respective control organism passaged in BAC-free medium. When the BAC-adapted bacterium was grown in BAC-free medium, 1,052 genes were upregulated and 753 were downregulated. Repeated passage solely in biocide-free medium resulted in 460 upregulated and 476 downregulated genes compared with unexposed bacteria. Long-term exposure to environmentally relevant BAC concentrations increased the expression of genes associated with efflux and reduced the expression of genes associated with outer-membrane porins, motility, and chemotaxis. This was manifested phenotypically through the loss of function (motility). Repeated passage in a BAC-free environment resulted in the upregulation of multiple respiration-associated genes, which was reflected by increased growth rate. In summary, repeated exposure ofE. colito BAC residues resulted in significant alterations in global gene expression that were associated with minor decreases in biocide susceptibility, reductions in growth rate and biofilm formation, and loss of motility.IMPORTANCEExposure to very low concentrations of biocides in the environment is a poorly understood risk factor for antimicrobial resistance. Repeated exposure to trace levels of the biocide benzalkonium chloride (BAC) resulted in loss of function (motility) and a general reduction in bacterial fitness but relatively minor decreases in susceptibility. These changes were accompanied by widespread changes in theEscherichia colitranscriptome. These results demonstrate the importance of including phenotypic characterization in studies designed to assess the risks of biocide exposure.


Author(s):  
Hesham Ismail ◽  
Balakumar Balachandran

In carrying out simultaneous localization and mapping, a mobile vehicle is used to simultaneously estimate its position and build a map of the environment. The long-term goal of this work is to build an autonomous inspection mobile vehicle for oil storage tanks and pipelines. The harsh environmental conditions in storage tanks and pipelines limit the types of feature extraction sensors and vehicle pose estimation sensors that one can use. Here, a SOund Navigation And Ranging (SONAR) sensor will be used for feature extraction, and a gyroscope and an encoder will be used for vehicle pose estimation. The integration of these sensors (SONAR, encoder, and gyroscope) will be discussed in this paper, along with the use of a recently developed algorithm fusion for SONAR sensors. The integration of the sensors represents a step towards implementation of concurrent localization and mapping progress in harsh environments.


Pathogens ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 835
Author(s):  
Jordan R. Gaston ◽  
Marissa J. Andersen ◽  
Alexandra O. Johnson ◽  
Kirsten L. Bair ◽  
Christopher M. Sullivan ◽  
...  

Indwelling urinary catheters are common in health care settings and can lead to catheter-associated urinary tract infection (CAUTI). Long-term catheterization causes polymicrobial colonization of the catheter and urine, for which the clinical significance is poorly understood. Through prospective assessment of catheter urine colonization, we identified Enterococcus faecalis and Proteus mirabilis as the most prevalent and persistent co-colonizers. Clinical isolates of both species successfully co-colonized in a murine model of CAUTI, and they were observed to co-localize on catheter biofilms during infection. We further demonstrate that P. mirabilis preferentially adheres to E. faecalis during biofilm formation, and that contact-dependent interactions between E. faecalis and P. mirabilis facilitate establishment of a robust biofilm architecture that enhances antimicrobial resistance for both species. E. faecalis may therefore act as a pioneer species on urinary catheters, establishing an ideal surface for persistent colonization by more traditional pathogens such as P. mirabilis.


Biomaterials ◽  
2009 ◽  
Vol 30 (28) ◽  
pp. 5234-5240 ◽  
Author(s):  
Gang Cheng ◽  
Guozhu Li ◽  
Hong Xue ◽  
Shengfu Chen ◽  
James D. Bryers ◽  
...  

2020 ◽  
Author(s):  
Maria Chiara Sportelli ◽  
Giada Caniglia ◽  
Ruggiero Quarto ◽  
Rosaria Anna Picca ◽  
Antonio Valentini ◽  
...  

&lt;p&gt;Biofilms are considered a major cause of serious health issues in human medicine and food industry, due to their resistance against harsh conditions and pharmacological treatment [1]. Biofilms are defined as three-dimensional structures encasing bacterial communities rooted in extracellular polymeric substances (EPS). These complex systems are strongly influenced by a variety of parameters including biofilm age, external conditions, nutrient deficiency, attack of exogenous agents [2]. Moreover, bacterial colonies may activate survival strategies when subjected to stress such as the presence of antimicrobial agents. Even cannibalistic behavior may occur [3], which involves the secretion of cannibalism toxins inducing the generation of lysed cells providing nutrients.&lt;/p&gt; &lt;p&gt;Several methodologies were developed for or adapted to biofilm formation studies enabling a more comprehensive understanding of biofilm physiology, structure, and composition. This information should facilitate the development of more effective eradication strategies. Infrared spectroscopy in attenuated total reflectance (IR-ATR) mode provides in-situ and close to real time monitoring of biofilm lifecycles providing molecular information on the various stages of biofilm formation. Given the antibiotic resistance of biofilms [4], it is of increasing importance to develop innovative methodologies for the treatment of biofilm-related infections. While our research team has shown the generic utility of antimicrobial nanoparticles (NPs) such as ZnONPs, AgNPs, CuNPs, etc. in the past [5], the current study focuses on AgNPs embedded within fluoropolymer matrices with tunable loading of the NPs. Next to morphological studies by TEM and AFM, detailed XPS investigations revealed the surface chemical composition. In addition, the kinetics of antimicrobial ion release enabled correlating the behavior of the nanocomposite to its swelling properties and 3D modification after immersion in liquids. Biofilm growth and inhibition was studied via AFM, optical microscopy and IR-ATR. The IR analysis of the biofilm allowed collecting molecular information on the biofilm behavior during long-term contact with antimicrobial surfaces. It was demonstrated that bacterial cells may re-colonize on top of dead biomass once the latter is thick enough to prevent direct interaction with the antimicrobial surface. In summary, this study represents an excellent foundation for developing an in depth understanding on the behavior of bacterial colonies and nascent biofilms in contact with surfaces decorated with nanoantimicrobials over extended periods of time. It is anticipated that an improved understanding on the stages of biofilm formation provides insight into the processes governing antimicrobial resistance phenomena. Finally, present antimicrobial material may be a useful strategy against Corona viruses. An outlook to this urging topic will be also presented.&lt;/p&gt; &lt;div&gt; &lt;p&gt;[1] N. Billings et al., Rep. Prog. Phys., 2015, 78, 036601. [2] D.O. Serra et al., MBio., 2013, 4, e00103. [3] C. H&amp;#246;fler et al., Microbiology, 2016, 162, 164. [4] M.C. Sportelli et al., Sci. Rep., 2017, 7, 11870. [5] M.C. Sportelli et al., TrAC, 2016, 84, 131.&lt;/p&gt; &lt;/div&gt;


2012 ◽  
Vol 29 (4) ◽  
pp. 657-665 ◽  
Author(s):  
Hamouda Elabed ◽  
Makaoui Maatallah ◽  
Rim Hamza ◽  
Ibtissem Chakroun ◽  
Amina Bakhrouf ◽  
...  

1979 ◽  
Vol 101 (2) ◽  
pp. 82-86
Author(s):  
M. A. Mahtab ◽  
D. W. Lamb ◽  
L. L. Van Sambeek ◽  
J. D. Gill

This paper, the first in a series of two, presents the results of a geotechnical evaluation of the Weeks Island dome salt mine. The purpose of the evaluation was to confirm the suitability of the underground facility for the long-term storage of crude oil under the Federal Energy Administration’s Strategic Petroleum Reserve Program. The Weeks Island mine, currently operated by the Morton Salt Company, is located in a salt dome on the Gulf Coast south of New Iberia, Louisiana. The mine has two levels of workings, at depths of approximately 185 and 245 m (600 and 800 ft) with development by the room-and-pillar mining technique. Geologic features of interest within the mine include zones of vertical banding and folding, shear zones, and blowouts. Field testing indicated that the salt mass is, for all intents and purposes, impermeable. Brine and oil leaks and gas seeps were examined and thought to be localized phenomena that did not affect mine stability and should not affect crude oil containment. The 23-m- (75-ft-) high pillars are generally intact with minor to severe spalling, generally in older areas of the mine. The mine roof exhibits no signs of distress or failure. Based on the overall results of the geotechnical and rock mechanics evaluations, the existing salt mine facility at Weeks Island was certified as suitable for the long-term storage of crude oil.


Sign in / Sign up

Export Citation Format

Share Document