Oxide-water interaction and wetting property of ceria surfaces tuned by high-temperature thermal aging

2021 ◽  
pp. 149658
Author(s):  
Yanlong Wang ◽  
Qin Zhou ◽  
Leilei Kang ◽  
Liang Yang ◽  
Han Wu ◽  
...  
2021 ◽  
pp. 50948
Author(s):  
Wenchao Wang ◽  
Xiaoman Wu ◽  
Chao Ding ◽  
Xianbo Huang ◽  
Nanbiao Ye ◽  
...  

2014 ◽  
Vol 1693 ◽  
Author(s):  
Dean P. Hamilton ◽  
Michael R. Jennings ◽  
Craig A. Fisher ◽  
Yogesh K. Sharma ◽  
Stephen J. York ◽  
...  

ABSTRACTSilicon carbide power devices are purported to be capable of operating at very high temperatures. Current commercially available SiC MOSFETs from a number of manufacturers have been evaluated to understand and quantify the aging processes and temperature dependencies that occur when operated up to 350°C. High temperature constant positive bias stress tests demonstrated a two times increase in threshold voltage from the original value for some device types, which was maintained indefinitely but could be corrected with a long negative gate bias. The threshold voltages were found to decrease close to zero and the on-state resistances increased quite linearly to approximately five or six times their room temperature values. Long term thermal aging of the dies appears to demonstrate possible degradation of the ohmic contacts. This appears as a rectifying response in the I-V curves at low drain-source bias. The high temperature capability of the latest generations of these devices has been proven independently; provided that threshold voltage management is implemented, the devices are capable of being operated and are free from the effects of thermal aging for at least 70 hours cumulative at 300°C.


Author(s):  
Pradeep Lall ◽  
Vikas Yadav ◽  
Jeff Suhling ◽  
David Locker

Electronics in automotive underhood and downhole drilling applications may be subjected to sustained operation at high temperature in addition to high strain-rate loads. SAC solders used for second level interconnects have been shown to experience degradation in high strain-rate mechanical properties under sustained exposure to high temperatures. Industry search for solutions for resisting the high-temperature degradation of SAC solders has focused on the addition of dopants to the alloy. In this study, a doped SAC solder called SAC-Q solder have been studied. The high strain rate mechanical properties of SAC-Q solder have been studied under elevated temperatures up to 200°C. Samples with thermal aging at 50°C for up to 6-months have been used for measurements in uniaxial tensile tests. Measurements for SAC-Q have been compared to SAC105 and SAC305 for identical test conditions and sample geometry. Data from the SAC-Q measurements has been fit to the Anand Viscoplasticity model. In order to assess the predictive power of the model, the computed Anand parameters have been used to simulate the uniaxial tensile test and the model predictions compared with experimental data. Model predictions show good correlation with experimental measurements. The presented approach extends the Anand Model to include thermal aging effects.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000312-000317
Author(s):  
Adam Morgan ◽  
Xin Zhao ◽  
Jason Rouse ◽  
Douglas Hopkins

Abstract One of the most important advantages of wide-bandgap (WBG) devices is high operating temperature (>200°C). Power modules have been recognized as an enabling technology for many industries, such as automotive, deep-well drilling, and on-engine aircraft controls. These applications are all required to operate under some form of extreme environmental conditions. Silicone gels are the most popular solution for the encapsulation of power modules due to mechanical stress relief enabled by a low Young's modulus, electrical isolation achieved due to high dielectric strength, and a dense material structure that protects encapsulated devices against moisture, chemicals, contaminants, etc. Currently, investigations are focused on development of silicone gels with long-term high-temperature operational capability. The target is to elevate the temperature beyond 200°C to bolster adoption of power modules in the aforementioned applications. WACKER has developed silicone gels with ultra-high purity levels of < 2ppm of total residual ions combined with > 200°C thermal stability. In this work, leakage currents through a group of WACKER Chemie encapsulant silicone gels (A, B, C) are measured and compared for an array of test modules after exposure to a 12kV voltage sweep at room temperature up to 275°C, and thermal aging at 150°C for up to more than 700 hours. High temperature encapsulants capable of producing leakage currents less than 1μA, are deemed acceptable at the given applied blocking voltage and thermal aging soak temperature. To fully characterize the high temperature encapsulants, silicone gel A, B, and C, an entire high temperature module is used as a common test vehicle. The power module test vehicle includes: 12mil/40mil/12mil Direct Bonded Copper (DBC) substrates, gel under test (GUT), power and Kelvin connected measurement terminals, thermistor thermal sensor to sense real-time temperature, and 12mil Al bonding wires to manage localized high E-Fields around wires. It was ultimately observed that silicone gels B and C were capable of maintaining low leakage current capabilities under 12kV and 275°C conditions, and thus present themselves as strong candidates for high-temperature WBG device power modules and packaging.


ACS Catalysis ◽  
2020 ◽  
Vol 10 (21) ◽  
pp. 12385-12392
Author(s):  
Beibei Wang ◽  
Hui Zhang ◽  
Wei Xu ◽  
Xiaobao Li ◽  
Wei Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document