Catechol-modified polymers for surface engineering of energetic crystals with reduced sensitivity and enhanced mechanical performance

2021 ◽  
pp. 151448
Author(s):  
Zijian Li ◽  
Xu Zhao ◽  
Feiyan Gong ◽  
Congmei Lin ◽  
Yu Liu ◽  
...  
2013 ◽  
Vol 816-817 ◽  
pp. 33-37
Author(s):  
Mirela Contulov ◽  
Rodica Vladoiu ◽  
Aurelia Mandes ◽  
Victor Ciupina ◽  
Vilma Buršíková

The aim of this contribution is to present the properties of the hydrogenated DLC (a-C:H) films and to study their growth carried out in a special deposition technique based on Gaseous Thermionic Vacuum Arc (G-TVA) method. The mechanical properties were investigated on cross-sectional samples using the Fischerscope HM 2000 depth sensing indentation (DSI) tester.


2021 ◽  
Author(s):  
Iurii Cherukhin

In this work, we have investigated polymer-based flexible antennas from commercial and modified polymers, which are competitive to rigid PCB technology. Classical designs of the patch and bow-tie antennas have been realized and showed that the realized gain can get up to 9.16dBi for the patch and 7.9dBi for the bow-tie antennas. The effects of the dielectric loss and conductivity on the antennas’ performance in S-band have been analyzed in order to find limits for further material engineering and the optimum trade-off between microwave and mechanical performance. The bending effects have been investigated, and it has been found that E-plane bend inside can boost the antenna gain from 8.6dBi to 10.1dBi with the frequency shift from 2.5 GHz to 2.4 GHz for the patch and 7.9dBi to 11.3dBi at 3.1 GHz for the bow-tie antennas. The non-classical π-shaped conductors’ edges lead to additional fringing fields, which have an effect on the antenna’s gain and can be explored and exploited for further performance improvements. The new recipes for low-loss, low-Dk dielectric materials, and chemical integration between conducting


2021 ◽  
Author(s):  
Iurii Cherukhin

In this work, we have investigated polymer-based flexible antennas from commercial and modified polymers, which are competitive to rigid PCB technology. Classical designs of the patch and bow-tie antennas have been realized and showed that the realized gain can get up to 9.16dBi for the patch and 7.9dBi for the bow-tie antennas. The effects of the dielectric loss and conductivity on the antennas’ performance in S-band have been analyzed in order to find limits for further material engineering and the optimum trade-off between microwave and mechanical performance. The bending effects have been investigated, and it has been found that E-plane bend inside can boost the antenna gain from 8.6dBi to 10.1dBi with the frequency shift from 2.5 GHz to 2.4 GHz for the patch and 7.9dBi to 11.3dBi at 3.1 GHz for the bow-tie antennas. The non-classical π-shaped conductors’ edges lead to additional fringing fields, which have an effect on the antenna’s gain and can be explored and exploited for further performance improvements. The new recipes for low-loss, low-Dk dielectric materials, and chemical integration between conducting


2019 ◽  
Author(s):  
Peter Peter ◽  
Claudia Creighton ◽  
David Fox ◽  
Pablo Mota Santiago ◽  
Adrian Hawley ◽  
...  

Author(s):  
Kulwant Singh ◽  
Gurbhinder Singh ◽  
Harmeet Singh

The weight reduction concept is most effective to reduce the emissions of greenhouse gases from vehicles, which also improves fuel efficiency. Amongst lightweight materials, magnesium alloys are attractive to the automotive sector as a structural material. Welding feasibility of magnesium alloys acts as an influential role in its usage for lightweight prospects. Friction stir welding (FSW) is an appropriate technique as compared to other welding techniques to join magnesium alloys. Field of friction stir welding is emerging in the current scenario. The friction stir welding technique has been selected to weld AZ91 magnesium alloys in the current research work. The microstructure and mechanical characteristics of the produced FSW butt joints have been investigated. Further, the influence of post welding heat treatment (at 260 °C for 1 h) on these properties has also been examined. Post welding heat treatment (PWHT) resulted in the improvement of the grain structure of weld zones which affected the mechanical performance of the joints. After heat treatment, the tensile strength and elongation of the joint increased by 12.6 % and 31.9 % respectively. It is proven that after PWHT, the microhardness of the stir zone reduced and a comparatively smoothened microhardness profile of the FSW joint obtained. No considerable variation in the location of the tensile fracture was witnessed after PWHT. The results show that the impact toughness of the weld joints further decreases after post welding heat treatment.


Author(s):  
J S Burnell-Gray ◽  
P K Datta
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document