Effects of climate change on late-season growth and survival of native and non-native species of watermilfoil (Myriophyllum spp.): Implications for invasive potential and ecosystem change

2012 ◽  
Vol 103 ◽  
pp. 83-88 ◽  
Author(s):  
David A. Patrick ◽  
Nicholas Boudreau ◽  
Zachary Bozic ◽  
Geoffrey S. Carpenter ◽  
David M. Langdon ◽  
...  
2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Robert R. Blank ◽  
James A. Young

Invasion of western North America by the annual exotic grassBromus tectorumL. (cheatgrass) has been an ecological disaster. High soil bioavailability of nitrogen is a contributing factor in the invasive potential ofB. tectorum. Application of labile carbon sources to the soil can immobilize soil nitrogen and favor native species. We studied the interaction of labile carbon addition (sucrose), with soil invasion status and fertilizer addition on the growth ofB. tectorum. Soils were noninvaded (BNI) andB. tectoruminvaded (BI). Treatments were control, sucrose, combined fertilizer, and sucrose + fertilizer. The greenhouse experiment continued for 3 growth-cycles. After the 1st growth-cycle, sucrose addition reducedB. tectorumaboveground mass almost 70 times for the BI soil but did not significantly reduce growth in the BNI soil.B. tectorumaboveground mass, after the 1st growth-cycle, was over 27 times greater for BI control soils than BNI control soils. Although sucrose addition reduced soil-solution , tissue N was not significantly lowered, suggesting that reduction of soil available N may not be solely responsible for reduction inB. tectorumgrowth. Noninvaded soil inhibits growth ofB. tectorum. Understanding this mechanism may lead to viable control strategies.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 110
Author(s):  
Yingxuan Yin ◽  
Qing He ◽  
Xiaowen Pan ◽  
Qiyong Liu ◽  
Yinjuan Wu ◽  
...  

Pomacea canaliculata is one of the 100 worst invasive alien species in the world, which has significant effects and harm to native species, ecological environment, human health, and social economy. Climate change is one of the major causes of species range shifts. With recent climate change, the distribution of P. canaliculata has shifted northward. Understanding the potential distribution under current and future climate conditions will aid in the management of the risk of its invasion and spread. Here, we used species distribution modeling (SDM) methods to predict the potential distribution of P. canaliculata in China, and the jackknife test was used to assess the importance of environmental variables for modeling. Our study found that precipitation of the warmest quarter and maximum temperature in the coldest months played important roles in the distribution of P. canaliculata. With global warming, there will be a trend of expansion and northward movement in the future. This study could provide recommendations for the management and prevention of snail invasion and expansion.


Diversity ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 187 ◽  
Author(s):  
Norma Martínez-Lendech ◽  
Ana P. Martínez-Falcón ◽  
Juan Jacobo Schmitter-Soto ◽  
Humberto Mejía-Mojica ◽  
Valentino Sorani-Dalbón ◽  
...  

Species introductions and extirpations are key aspects of aquatic ecosystem change that need to be examined at large geographic and temporal scales. The Pánuco Basin (Eastern Mexico) has high ichthyological diversity and ecological heterogeneity. However, freshwater fish (FWF) introductions and extirpations since the mid-1900s have modified species range and distribution. We examine changes in FWF species composition in and among four sub-basins of the Pánuco by comparing fish collection records pre-1980 to 2018. Currently, the FWF of the Pánuco includes 95 species. Fishes in the Poeciliidae, Cyprinidae, and Cichlidae, respectively, comprised most records over time. Significant differences in species composition were found between the first (pre-1980) and last (2011–2018) study periods, but not for periods in-between. Eight independent species groups were key for explaining changes in Pánuco river ichthyofauna; one group was dominated by invasive species, and saw increases in the number of records across study periods (faunal homogenization). Another group was formed by species with conservation concern with a declining number of records over time. Thirteen (2 native and 11 non-native) species were responsible for temporal turnover. These results strongly suggest high rates of differentiation over time (via native species loss) following widespread non-native species introductions.


2020 ◽  
Author(s):  
Xuan Liu ◽  
Jason R Rohr ◽  
Xianping Li ◽  
Teng Deng ◽  
Wenhao Li ◽  
...  

Abstract Understanding how alien species assemble is crucial for predicting changes to community structure caused by biological invasions and for directing management strategies for alien species, but patterns and drivers of alien species assemblages remain poorly understood relative to native species. Climate has been suggested as a crucial filter of invasion-driven homogenization of biodiversity. However, it remains unclear which climatic factors drive the assemblage of alien species. Here, we compiled global data at both grid scale (2,653 native and 2,806 current grids with a resolution of 2° × 2°) and administrative scale (271 native and 297 current nations and sub-nations) on the distributions of 361 alien amphibians and reptiles (herpetofauna), the most threatened vertebrate group on the planet. We found that geographical distance, a proxy for natural dispersal barriers, was the dominant variable contributing to alien herpetofaunal assemblage in native ranges. In contrast, climatic factors explained more unique variation in alien herpetofaunal assemblage after than before invasions. This pattern was driven by extremely high temperatures and precipitation seasonality, 2 hallmarks of global climate change, and bilateral trade which can account for the alien assemblage after invasions. Our results indicated that human-assisted species introductions combined with climate change may accelerate the reorganization of global species distributions.


Author(s):  
Nathan G King ◽  
Sophie B Wilmes ◽  
David Smyth ◽  
Jonathan Tinker ◽  
Peter E Robins ◽  
...  

Abstract Invasive non-native species and global warming are two of the greatest components of global ecosystem change. The Pacific oyster, Crassostrea gigas, is the world most cultivated shellfish and was introduced throughout the Northwest European Shelf (NWES) under the premise it could not complete its life cycle. Recent warming trends have changed this and wild populations can be found as far north as Nordic Scandinavia. Under the RCP8.5 concentration pathway, we predict that the majority of NWES coastline will be within C. gigas’s thermal recruitment niche by 2100. Given the widespread occurrence of current naturalized C. gigas populations, its large larval dispersal potential and a lack of feasible management solutions, C. gigas will likely undergo a considerable range expansion this century. The time taken to reach maturity is predicted to decrease by up to 60 days, which may lead to precocious spawning events, facilitating expansion further. Crassostrea gigas can form extensive reefs completely transforming native systems. This may compromise native biodiversity, protected habitats, and commercial species. However, naturalization can also deliver a number of beneficial ecosystem goods and services to human society. Whether naturalization is deemed positive or negative will depend on biogeographic context, the perceptions of stakeholders, and the wider management priorities.


2008 ◽  
Vol 74 (15) ◽  
pp. 4610-4625 ◽  
Author(s):  
M. Andrea Azcarate-Peril ◽  
Eric Altermann ◽  
Yong Jun Goh ◽  
Richard Tallon ◽  
Rosemary B. Sanozky-Dawes ◽  
...  

ABSTRACT This study presents the complete genome sequence of Lactobacillus gasseri ATCC 33323, a neotype strain of human origin and a native species found commonly in the gastrointestinal tracts of neonates and adults. The plasmid-free genome was 1,894,360 bp in size and predicted to encode 1,810 genes. The GC content was 35.3%, similar to the GC content of its closest relatives, L. johnsonii NCC 533 (34%) and L. acidophilus NCFM (34%). Two identical copies of the prophage LgaI (40,086 bp), of the Sfi11-like Siphoviridae phage family, were integrated tandomly in the chromosome. A number of unique features were identified in the genome of L. gasseri that were likely acquired by horizontal gene transfer and may contribute to the survival of this bacterium in its ecological niche. L. gasseri encodes two restriction and modification systems, which may limit bacteriophage infection. L. gasseri also encodes an operon for production of heteropolysaccharides of high complexity. A unique alternative sigma factor was present similar to that of B. caccae ATCC 43185, a bacterial species isolated from human feces. In addition, L. gasseri encoded the highest number of putative mucus-binding proteins (14) among lactobacilli sequenced to date. Selected phenotypic characteristics that were compared between ATCC 33323 and other human L. gasseri strains included carbohydrate fermentation patterns, growth and survival in bile, oxalate degradation, and adhesion to intestinal epithelial cells, in vitro. The results from this study indicated high intraspecies variability from a genome encoding traits important for survival and retention in the gastrointestinal tract.


2020 ◽  
Author(s):  
Stephanie Horion ◽  
Paulo Bernardino ◽  
Wanda De Keersmaecker ◽  
Rasmus Fensholt ◽  
Stef Lhermitte ◽  
...  

<p>Pressures on dryland ecosystems are ever growing. Large-scale vegetation die-offs, biodiversity loss and loss in ecosystem services are reported as a result of unsustainable land use, climate change and extreme events. Yet major uncertainties remain regarding our capability to accurately assess on-going land changes, as well as to comprehensively attribute drivers to these changes. Indeed ecosystem response to external pressures is often complex (e.g. non-linear) and non-unique (i.e. same response, different drivers). Besides critical knowledge on ecosystem stability and coping capacities to extreme events has still to be consolidated.</p><p>Recent advances in time series analysis and in the assessment of breakpoint open a new door in ecosystem research as they allow for the detection of turning points and tipping points in ecosystem development (Horion et al., 2016 and 2019). Identifying ecosystems that have significantly changed their way of functioning, i.e. that have tipped to a new functioning state, is of crucial importance for Ecology studies. These extremes cases of vegetation instability are golden mines for researches that try to understand how resilient are ecosystems to climate change and to non-sustainable use of land.</p><p>This is precisely what the U-TURN project is about:</p><ul><li><strong>Developing methods for detecting turning points in dryland ecosystem functioning</strong>; Here we defined <em>turning point</em> in ecosystem functioning as a key moment in the ecosystem development where its functioning is significantly changed or altered without implying the irreversibility of the process (Horion et al. (2016)), by opposition to the term ‘<em>tipping point</em>’ that implies irreversibility (Lenton et al. 2008).</li> <li><strong>Studying the contribution of climate and human pressure</strong> (e.g. land-use intensification, human induced land soil degradation) in pushing the ecosystem outside its safe operating space ; Here we used Earth Observation techniques coupled with Dynamic Vegetation Models to get process-based insights on the drivers of the observed changes in ecosystem functioning.</li> <li>Exploring whether <strong>early warning signal of turning points</strong> can be identified.</li> </ul><p>During our talk, we will present key methodological advances being achieved within the U-TURN project, and showcase some of our major findings in relation to abrupt changes in dryland ecosystem functioning.</p><p><strong>References:</strong></p><p>Horion, S., Ivits, E., De Keersmaecker, W., Tagesson, T., Vogt, J., & Fensholt, R. (2019). Mapping European ecosystem change types in response to land‐use change, extreme climate events, and land degradation. Land Degradation & Development, 30(8), 951-963. doi:10.1002/ldr.3282</p><p>Horion, S., Prishchepov, A. V., Verbesselt, J., de Beurs, K., Tagesson, T., & Fensholt, R. (2016). Revealing turning points in ecosystem functioning over the Northern Eurasian agricultural frontier. Global Change Biology, 22(8), 2801-2817. doi:10.1111/gcb.13267</p><p>Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., & Schellnhuber, H. J. (2008). Tipping elements in the Earth's climate system. Proc Natl Acad Sci U S A, 105(6), 1786-1793. doi:10.1073/pnas.0705414105</p><p> </p><p><strong>Project website: http://uturndryland.wixsite.com/uturn</strong></p><p>This research is funded by the Belgian Federal Science Policy Office (Grant/Award Number:SR/00/339)</p>


Sign in / Sign up

Export Citation Format

Share Document